Tutorats de physique statistique

FASCICULE
Plan du cours

Introduction
 1 Du microscopique au macroscopique
 2 Splendeurs et misères de la thermodynamique
I Cinétique des gaz
 1 Position du problème
 2 Simulations de dynamique moléculaire
 3 Calcul de la pression cinétique
 4 Collisions
 5 Loi de distribution des vitesses
 6 Relaxation vers l'équilibre
 7 Application aux réactions chimiques
II Théorie de l'information
 1 Mesurer l'information
 2 L'entropie statistique
 3 Inférence statistique
III L'ensemble microcanonique
 1 Notion d'ensemble statistique
 2 L'ensemble microcanonique
 3 L'entropie microcanonique
 4 Thermodynamique microcanonique
 5 Exemples
IV L'ensemble canonique
 1 Système en contact avec un thermostat
 2 La fonction de partition
 3 Applications
V L'ensemble grand-canonique
 1 Système en contact avec un thermostat et un réservoir de particules
 2 La fonction de partition grand-
 3 Applications
 4 Tableau synoptique des différents ensembles
VI Statistiques quantiques
 1 Particules indiscernables
 2 Factorisation des fonctions de partition canoniques
 3 Factorisation des fonctions de partition grand-canoniques
VII Les gaz réels
 1 L’équation d’état de Van der Waals
2 Le développement du viriel

VIII Mélange et solutions
 1 Mélange idéal
 2 Solutions diluées
 3 Transition ordre-désordre

IX Le gaz parfait de fermions
 1 Le gaz de Fermi
 2 Développement à basse température pour un gaz de fermions libres

X Le rayonnement du corps noir
 1 Le corps noir
 2 Spectre du rayonnement
Table des matières

1 **Outils mathématiques, probabilités et révisions de thermodynamique**
 1. Matrice jacobienne ... 7
 2. Multiplicateurs de Lagrange ... 7
 3. Nombres d’états possibles et indiscernabilité 7
 4. Loi binomiale ... 8
 5. Marche aléatoire 1D ...' 9
 6. Révisions de thermodynamique 10
 7. Gaz réels .. 11

2 **Théorie cinétique des gaz** ... 13
 1. Distribution des vitesses de Maxwell (1860) 13
 2. Régime de Knudsen (1909) – Fuites 13
 3. Conductivité thermique et viscosité 14
 4. Cinétique d’une réaction chimique 14

3 **Entropie et information** .. 18
 1. Probabilités conditionnelles .. 18
 2. Expression de l’entropie de Shannon 18
 3. Dé pipé .. 19
 4. Codage optimal ... 19
 5. Codage d’événements rares ... 19

4 **L’ensemble microcanonique** ... 20
 1. Densité d’états du gaz parfait 20
 2. Entropie du gaz parfait ... 21
 3. Tests de l’hypothèse d’ergodicité 22
 4. Oscillateur harmonique ... 23
 5. Élasticité du caoutchouc .. 23

5 **L’ensemble canonique** .. 25
 1. Gaz de « sphères dures » à une dimension 25
 2. Modèle simple de cristal paramagnétique 26
 3. Glace à une dimension ... 27
 4. Défauts de Frenkel dans les cristaux 28
 5. Molécules diatomiques ... 29
 6. Sublimation ... 32

6 **L’ensemble grand-canonique** 34
 1. Isothermes d’adsorption de Langmuir (1916) 34
 2. Isothermes d’adsorption Brunauer-Emmett-Teller (1938) 35

7 **Statistiques quantiques** ... 36
 1. Paramagnétisme de Pauli .. 36
 2. Les naines blanches ... 37
 3. Gaz de bosons indépendants 38
8 Chaleur spécifique des solides 41
 1. Loi de Dulong & Petit (1819) .. 41
 2. Modèle d’Einstein (1907) : oscillateurs indépendants 41
 3. Modèle de Debye (1912) : oscillateurs couplés 42

A Formulaire 44
 Rappels sur la formule de Stirling 44
 Intégrales gaussiennes .. 44
 Volume d’une hyperboule .. 45
 Propriétés de la fonction Γ .. 45
 Formule de sommation d’Euler-Mac Laurin 45
 Fonction de Riemann ζ .. 45
 Quelques intégrales ζ .. 46

B Solutions 47
Déroulement des tutorats

Tutorat 1
- Chap. 1, 1. Matrice jacobienne,
- Chap. 1, 2. Multiplicateurs de Lagrange,
- Chap. 2, 1. Distribution des vitesses de Maxwell.

Tutorat 2
- Chap. 2, 3. Conductivité thermique et viscosité,

Tutorat 3 L’intégralité du chapitre 3, Entropie et information.

Tutorat 4 Chap. 4, 1. Densité d’états du gaz parfait.

Tutorat 5 Chap. 4, 2. Entropie du gaz parfait.

Tutorat 6
- Chap. 4, 3. Tests de l’hypothèse d’ergodicité,
- Chap. 4, 4. Oscillateur harmonique,
- Chap. 4, 5. Élasticité du caoutchouc.

Tutorat 7
- Chap. 5, 1. Gaz de « sphères dures » à une dimension,
- Chap. 5, 2. Modèle simple de cristal paramagnétique.

Tutorat 8
- Chap. 5, 3. Glace à une dimension,
- Chap. 5, 4. Défauts de Frenkel dans les cristaux.

Tutorat 9 Chap. 5, 5. Molécules diatomiques.

Tutorat 10 Chap. 5, 6. Sublimation.

Tutorat 11
- Chap. 6, 1. Isothermes d’adsorption de Langmuir (1916),
- Chap. 6, 2. Isothermes d’adsorption Brunauer-Emmett-Teller (1938),
- Chap. 7, 1. Paramagnétisme de Pauli.

Tutorat 12 Chap. 7, 2. Les naines blanches.

Tutorat 14
- Chap. 8, 2. Modèle d’Einstein (1907) : oscillateurs indépendants,

Tutorat 15 Révisions.
Chapitre 1

Outils mathématiques, probabilités et révisions de thermodynamique

Liste des exercices

1. Matrice jacobienne ... 7
2. Multiplicateurs de Lagrange .. 7
3. Nombres d’états possibles et indiscernabilité 7
 I. Cas sans dégénérescence 7
 II. Cas avec dégénérescence 8
4. Loi binomiale .. 8
5. Marche aléatoire 1D ... 9
6. Révisions de thermodynamique 10
7. Gaz réels ... 11

Exercice 1. Matrice jacobienne

1. On considère le changement de variable correspondant au passage de coordonnées cartésiennes à des coordonnées polaires : $(x, y) \rightarrow (r, \theta)$
 (a) Écrire la matrice jacobienne (matrice des dérivées partielles),
 (b) Calculer le déterminant jacobien,
 (c) En déduire la relation entre les éléments de surface $dxdy$ et $drd\theta$.

2. Mêmes questions avec le changement de variables : $(x, y) \rightarrow (z_G = \frac{x+y}{2}, z_R = x - y)$

Exercice 2. Multiplicateurs de Lagrange

On veut construire une boîte de conserve cylindrique de hauteur H et de rayon R. Donner la relation entre H et R qui permet d’obtenir le volume le plus grand pour une surface totale des parois fixée. Donner ensuite la relation entre H et R qui permet d’obtenir une surface minimale des parois à volume fixé.

Exercice 3. Nombres d’états possibles et indiscernabilité

Partie I. Cas sans dégénérescence

On se donne un ensemble de N particules identiques susceptibles chacune d’occuper p niveaux d’énergies respectives E_1, E_2, \ldots, E_p. On va considérer à chaque fois les deux cas suivants :
1. les particules sont indiscernables ;
2. les particules sont indiscernables mais elles sont disposées sur des sites qui sont discernables (par exemple sur les nœuds d’un réseau cristallin).
1. Exemples simples

Prenons le cas particulier $p = 2$ (par exemple pour des particules identiques dont les niveaux d’énergie sont déterminés par l’état de spin $s = \pm 1/2$).

(a) Compter (et éventuellement dessiner) le nombre d’états différents que peut occuper une assemblée de $N = 2$ puis $N = 3$ particules dans le cas 1 puis dans le cas 2.

(b) Dans le cas 1 et $N = 2$, on propose de représenter les trois états possibles comme suit (méthode d’Ehrenfest) :

\[
| \bullet | \bullet | \bullet |
\]

(1.1)

Que représentent \bullet et $|$? Représenter ainsi les états possibles pour $N = 3$. La méthode d’Ehrenfest consiste alors à compter le nombre de façons de positionner les $|$ par rapport aux \bullet dans cette représentation.

2. Donner de façon générale le nombre W d’états possibles d’un système à p niveaux lorsque les N particules sont associées à des sites discernables (cas 2). Plus précisément, indiquer dans un premier temps comment calculer ce nombre d’états en raisonnant par site. On peut aussi compter ce nombre d’états en raisonnant par niveau d’énergie. Pour cela, on décrit un état du système par la donnée des nombres d’occupation de chaque niveau d’énergie : ainsi, la configuration $\{n_i\}$ avec $i = 1, \cdots, p$ et $\sum_{i=1}^{p} n_i = N$ correspond à n_1 particules dans l’état d’énergie E_1, n_2 particules dans l’état d’énergie E_2, etc. Montrer que l’on peut calculer W de manière générale.

(a) Donner de même le nombre d’états possibles d’un système de N particules à p niveaux dans le cas 1. On pourra utiliser ici la méthode d’Ehrenfest.

(b) Toujours dans le cas 1, exprimer l’occupation moyenne $< n_i >$ de chaque niveau d’énergie (en moyennant sur l’ensemble des états accessibles). Donner la solution pour le cas $p = 2$.

Partie II. Cas avec dégénérescence

On se donne maintenant une suite discrète de niveaux d’énergie E_1, E_2, \cdots, E_p de dégénérescences respectives g_1, g_2, \cdots, g_p. Et on répartit les N particules sur ces niveaux avec n_1 particules d’énergie E_1, n_2 particules d’énergie E_2, etc.

1. Calculer le nombre W de cas possibles correspondant à une telle répartition dans le cas 2. On pourra commencer par faire un dessin illustrant, par exemple, la répartition de $N = 2$ particules discernables, A et B, sur $p = 2$ niveaux d’énergie de dégénérescences respectives $g_1 = 1$ et $g_2 = 2$.

2. Dans toute cette question on se place dans le cas 1.

(a) Calculer le nombre W de cas possibles. On donnera directement le résultat W. On pourra aussi écrire le nombre W de cas possibles comme

\[
W = \sum_{n_1 + \cdots + n_p = N} W_{BE}(\{n_i\})
\]

(1.2)

où la somme porte sur l’ensemble des configurations $\{n_i\}$ telles que $\sum_{i} n_i = N$ et où le suffixe BE pour Bose-Einstein sera justifié plus loin dans le cours. Donner $W_{BE}(\{n_i\})$.

(b) Mêmes questions si on s’interdit de mettre plus d’une particule par état. Que vaut $W_{FD}(\{n_i\})$? (distribution de Fermi-Dirac)

3. Montrer que si $n_i \ll g_i$, les situations II-2) (de type Bose-Einstein) et II-3) (Fermi-Dirac) conduisent au même résultat pour $W(\{n_i\})$. Relier aussi dans ce cas le nombre d’états obtenu dans la situation où les particules sont indiscernables au nombre d’états obtenu lorsque les particules sont discernables.

Exercice 4. Loi binômiale

Une enceinte de volume V contient N particules sans interaction mutuelle. Soit n le nombre de particules contenues dans une partie de volume v de l’ENCEINTE. Les particules sont supposées microscopiquement discernables. On étudie une situation d’équilibre pour laquelle la probabilité pour une particule donnée d’être dans v est v/V.

CHAPITRE 1. OUTILS MATHEMATIQUES, PROBABILITES ET REVISIONS DE THERMODYNAMIQUE

1. Quelle est la probabilité d’avoir \(n \) particules d’« identité » donnée dans le volume \(v \)?

2. On s’intéresse maintenant aux « macro-états » qui sont uniquement définis par la seule donnée du nombre \(n \) de particules présentes dans \(v \). Quelle est la probabilité \(f(n) \) du macro-état caractérisé par \(n \)?

3. Calculer la valeur moyenne \(\bar{n} \) et l’écart type \(\Delta n \) relatif à \(n \). Pour ces calculs, on pourra éventuellement partir de l’expression de la fonction génératrice \(F(x) = \sum_{n} f(n)x^n \).

4. Donner l’allure de \(f(n) \) lorsque \(N \to \infty \). En supposant \(N \gg 1 \), \(n \gg 1 \) et \(N \gg n \) et en les assimilant à des variables continues, montrer que la moyenne \(\bar{n} \) précédemment trouvée coïncide avec la valeur la plus probable et qu’au voisinage de cette valeur, \(f(n) \) peut s’écrire sous une forme gaussienne :

\[
f(n) = f(\bar{n}) \exp\left(-\frac{(n-\bar{n})^2}{2(\Delta n)^2} \right),
\]

Quelle est la signification de \(\Delta n \)?

5. Montrer que lorsque \(v/V \to 0 \) (avec \(V \to \infty \) et \(N/V = \text{cste} \)), \(f(n) \) prend la forme d’une distribution de Poisson :

\[
f(n) \simeq \frac{\bar{n}^n}{n!} e^{-\bar{n}}.
\]

6. On recouvre par évaporation sous vide une surface par une couche métallique d’épaisseur moyenne de 5 atomes de métal. Calculer le pourcentage de la surface effectivement recouverte par 0, 1, 2, …, 10 atomes.

Exercice 5. Marche aléatoire 1D

Un marcheur aléatoire se déplace sur une droite orientée : à chaque pas de temps \(\delta t \), il effectue un pas \(+\delta x \) avec la probabilité \(p_+ = p \), ou un pas \(-\delta x \) avec la probabilité \(p_- = 1 - p \). (Le cas particulier \(p = 1 - p = 1/2 \) correspond à la marche aléatoire non biaisée.) On note \(n_x = n \in [0, N] \) le nombre de pas \(+\delta x \) effectués en un temps \(t = N\delta t \), et l’on suppose que \(x(t=0) = 0 \).

1. Quelle est la probabilité \(\mathcal{P}(n, N) \) que le marcheur ait effectué \(n \) pas \(+\delta x \) après \(N \) pas ? Vérifier la normalisation. \(^1\)

2. Calculer la valeur moyenne \(\pi = \langle n \rangle \). En déduire \(\pi \) et la vitesse de dérive du marcheur \(d\pi/dt \). \(^2\)

3. Calculer l’écart quadratique moyen \(\Delta n \), défini par \(\langle (\Delta n)^2 \rangle \doteq \langle (n - \pi)^2 \rangle \), puis \(\Delta x \). \(^3\)

4. On suppose maintenant \(N \gg 1 \), tandis que la probabilité \(p \) n’est ni trop petite ni trop proche de 1. En utilisant l’approximation de Stirling :

\[
\ln(n!) = n \ln n - n + \mathcal{O}(\ln n)
\]

déterminer quelle est alors, à \(N \) fixé, la valeur \(\pi^* \) la plus probable de \(n \). \(^4\)

5. Montrer qu’au voisinage de \(\pi^* \), \(\mathcal{P}(n, N) \) peut s’écrire :

\[
\mathcal{P}(n, N) \simeq \mathcal{P}(\pi^*, N) \exp \left(-\frac{(n-\pi^*)^2}{2(\Delta n)^2} \right).
\]

Commenter cette approximation.

6. On pose \(d(x,t) = \mathcal{P}(n, N)/\delta x \), où \(n \) est exprimé en fonction de \(x \) et \(N \) en fonction de \(t \). Vérifier que dans le cas de la marche aléatoire non biaisée \((p = 1 - p = 1/2) \), \(d \) est solution de l’équation :

\[
\frac{\partial d}{\partial t} - D \frac{\partial^2 d}{\partial x^2} = 0.
\]

Dans quel domaine de la physique apparaît cette équation ?

7. Lorsque \(n \) est fixé mais que \(N \) est très grand devant 1, la loi \(\mathcal{P}(n, N) \) tend vers une loi limite différente de celle trouvée en 5. Quelle est-elle ? \(^5\)
Exercice 6. Révisions de thermodynamique

Considérons une enceinte de volume \(V \) et fermée par un piston pouvant coulisser librement. Cette enceinte, en contact avec l’atmosphère où règne une pression \(P_0 \) et une température \(T_0 \), renferme un système thermodynamique considéré comme fermé.

1. On s’intéresse tout d’abord aux propriétés générales d’un corps pur sous une seule phase (gazeuse ou liquide). On note \(U(S, V, n) \) l’énergie interne et \(G(T, P, n) \) l’enthalpie libre de ce corps, où \(S \) est l’entropie et \(n \) le nombre de moles de cette phase.

(a) Rappeler la relation existant entre l’enthalpie libre \(G \), l’énergie interne \(U \), la pression \(P \), la température \(T \), le volume \(V \) et l’entropie \(S \). Exprimer, pour un système fermé, les différentielles \(dU \) et \(dG \).

(b) En utilisant la propriété d’extensivité de \(G \), montrer que l’on peut écrire :

\[
G = n\mu(T, P) \quad \text{avec} \quad \mu(T, P) = \left(\frac{\partial G}{\partial n} \right)_{T, P}
\]

\(\mu(T, P) \) est l’enthalpie libre molaire, aussi appelée potentiel chimique.

(c) Exprimer, pour un système ouvert, la différentielle \(dG \) en fonction de \(V \), \(P \), \(T \), \(S \), \(\mu \) et \(n \). En déduire la différentielle \(dU \) pour un système ouvert.

(d) Montrer que :

\[
\left(\frac{\partial \mu}{\partial P} \right)_T = \frac{V}{n}
\]

(e) On note \(\mu_v(T_v, P_v) \) l’enthalpie libre molaire de la phase gazeuse à la pression \(P_v \) et à la température \(T_v \). Déterminer, pour cette phase assimilée à un gaz parfait, l’expression de la différence :

\[
\mu_v(T_v, P_v) - \mu_v(T_v, P_{sat}(T_v))
\]

où \(P_{sat}(T_v) \) est la pression de vapeur saturante à la température \(T_v \).

(f) On note \(\mu_l(T_l, P_l) \) l’enthalpie libre molaire de la phase liquide à la pression \(P_l \) et la température \(T_l \). Déterminer, pour un liquide incompressible dont le volume molaire est noté \(v_l \), l’expression de la différence :

\[
\mu_l(T_l, P_l) - \mu_l(T_l, P_{sat}(T_l))
\]

2. On suppose qu’une goutte de liquide sphérique de rayon \(r \) s’est formée dans l’enceinte et se trouve à l’équilibre thermodynamique avec le reste du corps pur sous phase gazeuse. La pression de la phase gazeuse est notée \(P_0 \) et sa température \(T_0 \). Pour des raisons qui apparaîtront plus claires dans la suite, \(P_0 \) n’est pas forcément égale à la pression de vapeur saturante \(P_{sat}(T_0) \). La pression de la phase liquide est notée \(P_l \) et sa température \(T_l \). On note \(U_v, S_v \) et \(V_v \) l’énergie interne, l’entropie et le volume de la phase gazeuse. On note les mêmes grandeurs \(U_l, S_l \) et \(V_l \) pour le liquide. On admet que l’énergie interne totale du système comprend une contribution supplémentaire \(U_A = \gamma A_r \), où \(\gamma \) est une grandeur positive et \(A_r \) l’aire de la goutte.

(a) Préciser la dimension de \(\gamma \). Comment s’appelle ce coefficient ? Indiquer des grandeurs physiques qui ont la même dimension.

(b) Pour un système fermé en contact avec un milieu extérieur de température \(T_0 \) et de pression \(P_0 \) fixées, on définit la fonction \(G^* = U + P_0 V - T_0 S \), où \(U \) et \(S \) sont l’énergie interne et l’entropie du système. Montrer que \(G^* \) est minimum à l’équilibre.

(c) Donner l’expression de \(G^* \) en fonction de \(U_l, U_v, U_A, V_v, V_l, S_v, S_l, P_l \) et \(T_0 \).

(d) En déduire la différentielle \(dG^* \) en fonction des différentielles \(dV_v, dV_l, dS_v, dS_l \) et \(dP_l \). On remarque que les grandeurs \(V_v, V_l, S_v, S_l \) et \(n_l \) peuvent varier indépendamment les uns des autres. Trouver les conditions d’équilibre mécanique et thermique du système. Discuter notamment la relation obtenue entre la pression de la phase vapeur et celle de la phase liquide.

(e) Dans toute la suite du problème, on suppose que l’équilibre mécanique et thermique est réalisé. Donner alors l’expression correspondante de \(dG^* \), que l’on notera \(dG^0 \). Donner la condition d’équilibre des quantités de matière des phases liquide et gazeuse. Déterminer le sens d’évolution du système lorsque cette condition d’équilibre n’est pas satisfaite.
(f) La phase liquide est supposée incompressible. La pression de vapeur saturante, \(P_{\text{sat}}(T_0) \), représente la pression d’équilibre entre la phase liquide et la phase gazeuse lorsque leur interface est plane \((r \to \infty)\). Montrer que l’équilibre des quantités de matière entre la phase gazeuse et la phase liquide sous une pression \(P_0 \neq P_{\text{sat}} \) détermine un rayon d’équilibre \(r_e \) de la goutte liquide qui vérifie la relation de Kelvin :

\[
\ln x = \beta \left(x - 1 + \frac{\delta}{r_e} \right)
\]

où \(x = P_0/P_{\text{sat}}(T_0) \). On exprimera \(\beta \) et \(\delta \) en fonction des paramètres \(T_0, P_{\text{sat}}(T_0), \gamma, v_\ell \) et de la constante des gaz parfaits \(R \).

(g) Pour l’eau, \(P_{\text{sat}} = 10^5 \) Pa à la température de 100°C. Montrer qu’à cette température \(\beta \ll 1 \) et préciser à quelle condition il existe une goutte d’eau. Pour cela, on aura avantage à s’appuyer sur une représentation graphique. Ces résultats restent-ils valables pour de hautes températures ?

3. Pour mieux comprendre ce que représente le rayon d’équilibre \(r_e \) obtenu précédemment, on s’intéresse au potentiel thermodynamique \(G^0(r) \), fonction du rayon de la goutte de liquide.

(a) Montrer que ce potentiel peut s’écrit:

\[
G^0 = -\Delta \mu^0 n_\ell + \gamma A_\ell + \text{Cste}
\]

où on a posé \(\Delta \mu^0 = \mu_v(T_0, P_0) - \mu_\ell(T_0, P_0) \).

(b) Déterminer la dépendance en \(r \) de \(\Delta G^0(r) = G^0(r) - G^0(r = 0) \).

(c) Représenter graphiquement \(\Delta G^0(r) \) dans les deux cas : \(P_0 < P_{\text{sat}}(T_0) \) et \(P_0 > P_{\text{sat}}(T_0) \). Dans chaque cas, et en fonction des valeurs de \(r \), déterminer le sens d’évolution spontanée de \(r \) lors de la condensation. Dans le cas où \(\Delta G^0(r) \) passe par un minimum, déterminer le rayon \(r_e \) pour lequel la valeur maximale est atteinte et déterminer \(\Delta G^0(r_e) \). Comparer \(r_e \) à \(r_0 \). À quoi peut-on comparer \(\Delta G^0(r_e) \) ?

(d) Calculer numériquement \(\Delta \mu^0, r_e \) et \(\Delta G^0(r_e) \) à 100°C pour \(P_0/P_{\text{sat}} = 1,001 ; P_0/P_{\text{sat}} = 1,01 ; P_0/P_{\text{sat}} = 1,1 \). Pour l’eau, on donne \(\gamma = 5,9.10^{-2} \) N.m\(^{-1}\) et \(P_{\text{sat}} = 10^5 \) Pa pour une température de 100°C. Commenter ces résultats.

(e) Expliquer pourquoi il est possible de trouver de la vapeur d’eau sans phase liquide à la température \(T_0 \) pour des pressions \(P_0 > P_{\text{sat}}(T_0) \). Proposer au moins un mécanisme physique susceptible de faire apparaître la phase liquide.

Exercice 7. Gaz réels

L’équation d’état de Van der Waals (1873) pour une mole de gaz est la suivante :

\[
\left(P + \frac{a}{V^2}\right)(V - b) = RT
\]

1. Donner la signification physique des termes faisant intervenir les constantes \(a \) et \(b \). Justifier la dépendance en \(V^{-2} \) du terme correctif de la pression.

2. Quelle serait l’équation pour \(n \) moles ?

3. **Développement du viriel** (Villarceau, Clausius (1872))

On peut donner une correction en puissances de la densité à l’équation des gaz parfaits :

\[
PV = nRT \left[1 + b_1(T) \frac{n}{V} + b_2(T) \left(\frac{n}{V} \right)^2 + \ldots \right]
\]

Vérifier que l’équation de Van der Waals coïncide avec cette expression au premier ordre en densité. Exprimer \(b_1 \) en fonction de \(a \) et \(b \).

4. Donner l’allure des isothermes dans le plan \(P - V \). Montrer en particulier qu’il existe une valeur \(T_c \) de la température pour laquelle l’isotherme présente un point d’inflexion, appelé point critique. Donner ses coordonnées \((P_c, V_c)\).
5. Réecrire l’équation d’état en utilisant les coordonnées réduites $\theta = \frac{T}{T_c}$, $\pi = \frac{P}{P_c}$ et $\nu = \frac{V}{V_c}$.
Dans ce système de coordonnées, les réseaux d’isothermes sont les mêmes pour tous les gaz : c’est la loi des états correspondants. ▶

6. Expliquer le résultat précédent par un raisonnement dimensionnel. ▶
Chapitre 2

Théorie cinétique des gaz

Liste des exercices

1. Distribution des vitesses de Maxwell (1860) .. 13
2. Régime de Knudsen (1909) – Fuites ... 13
3. Conductivité thermique et viscosité ... 14
 I. Conductivité thermique ... 14
 II. Viscosité ... 14
4. Cinétique d’une réaction chimique .. 14
 I. Préliminaire .. 15
 II. Vitesse de réaction et équilibre ... 16
 III. Comparaison à l’expérience ... 16

Exercice 1. Distribution des vitesses de Maxwell (1860)

On considère un gaz constitué de \(n \) particules de masse \(m \) par unité de volume.

Note : La valeur des intégrales se trouve en annexe A.

1. Soit \(f(v) \) la probabilité pour une particule d’avoir la vitesse \(v \) (norme) à d’re prés. Retrouver l’expression de la densité de probabilité \(f(v) \) en partant de l’expression de la densité de probabilité \(f(v_x, v_y, v_z) \) démontrée en cours. ▶ 11

2. Retrouver l’équation des gaz parfaits et montrer que
\[
\langle v \rangle = 2\sqrt{\frac{(2k_B T)}{(\pi m)}}.
\]

Exercice 2. Régime de Knudsen (1909) – Fuites

1. On considère une paroi percée d’un trou de surface \(S \). Montrer que le nombre de particules de gaz s’échappant à travers cette paroi par unité de temps vaut \(nS \langle v \rangle / 4 \).

2. Déterminer l’évolution temporelle de la pression dans un récipient fuyant dans le vide par un trou.
 ▶ 12

 Application numérique : évaluer le temps caractéristique de vidange pour un litre de dihydrogène à 0° C à travers un trou de 1 \(\mu \text{m}^2 \). Discuter la limite de validité de ce calcul.

3. Expérience de Reynolds (1879)
 On considère un gaz remplissant deux compartiments séparés par une paroi poreuse. Le gaz est maintenu à des températures différentes \(T_1 \) et \(T_2 \) dans chaque compartiment. En assimilant le passage des molécules à travers la paroi (phénomène de transpiration) à une fuite par un ensemble de petits trous, montrer qu’en régime permanent les pressions \(P_1 \) et \(P_2 \) vérifient la relation :

\[
\frac{P_1}{P_2} = \sqrt{\frac{T_1}{T_2}}
\]

Que se passe-t-il si l’on connecte les deux compartiments par un tuyau en maintenant la différence de température ?
Table 2.1 – Viscosité η (en μPl) et conductivité thermique κ (en mW/(m · K)) pour trois gaz rares.

<table>
<thead>
<tr>
<th>Gaz</th>
<th>M_{mol} (g)</th>
<th>$T = 273$ K η</th>
<th>$T = 373$ K κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Néon</td>
<td>20.18</td>
<td>29.74</td>
<td>45.8</td>
</tr>
<tr>
<td>Argon</td>
<td>39.95</td>
<td>20.99</td>
<td>16.36</td>
</tr>
<tr>
<td>Xénon</td>
<td>131.3</td>
<td>21.1</td>
<td>5.19</td>
</tr>
</tbody>
</table>

Exercice 3. Conductivité thermique et viscosité

On considère un gaz de particules dont les vitesses ont toutes le même module v et peuvent se déplacer selon les 2×3 directions d’un repère orthonormé. La densité numérique de particules est notée n, leur masse m. On utilise ce modèle simple pour déterminer des coefficients de transport.

Partie I. Conductivité thermique

Considérons un profil de température $T(z)$ dans le fluide. Étant donné un plan $z = cte$, les particules situées au dessous du plan ont une énergie différente de celles qui sont au dessus.

1. La couche de fluide pertinente pour ce problème est celle dont les particules peuvent traverser le plan avant d’avoir subi une collision. Quelle est son épaisseur ?
2. On ne veut retenir que la conduction par diffusion. Quelle est la condition sur les flux de particules qui traversent le plan par unité de surface et de temps depuis chaque côté ? Écrire leur valeur.
3. Écrire le bilan d’énergie transférée à travers le plan. En déduire la loi de Fourier :

$$jQ = -\kappa \frac{\partial T}{\partial z} \hat{z}$$

et l’expression du coefficient $\kappa = \frac{1}{3} n v c \lambda$, où c est la capacité calorifique par particule et λ le libre parcours moyen.
4. Écrire κ dans le cas d’un gaz parfait monoatomique. Discuter sa dépendance en pression et en température. Comparer aux valeurs données pour trois gaz rares (Table 2.1).

Partie II. Viscosité

On considère maintenant un écoulement macroscopique : le fluide s’écoule avec une vitesse $u = u_x(z) \hat{x}$. Le coefficient de viscosité η est défini par :

$$\mathbf{F} = -\eta \frac{\partial u_x}{\partial z} \hat{x}$$

où \mathbf{F} est la force tangentielle exercée par une couche de fluide sur la couche supérieure.

1. Justifier la définition de η.
2. Écrire la force \mathbf{F} en terme de bilan de quantité de mouvement.
3. Par un raisonnement analogue au § 1., montrer que $\eta = \frac{1}{3} n v m \lambda$.
4. Discuter la dépendance en pression et en température de η pour un gaz parfait. Comparer aux valeurs données pour trois gaz rares (Table 2.1).
5. Calculer le rapport κ/η.

Exercice 4. Cinétique d’une réaction chimique

Nous considérons une réaction chimique, $A+B \rightleftharpoons C+D$, caractérisée par une surface de potentiel de réaction présentant une barrière d’activation, comme illustré dans la Fig. 2.1.

À partir d’un modèle simple de collisions basé sur la théorie cinétique des gaz, nous cherchons à estimer la vitesse de réaction ainsi qu’à caractériser l’équilibre chimique. Le principe est le suivant. Une
réaction chimique entre deux molécules A et B nécessite une rencontre physique. Au cours de la collision, des liaisons peuvent se rompre et se reformer. Mais chaque collision ne mène pas forcément à une réaction chimique : Vitesse de réaction chimique < Vitesse de collision physique
Une première approche simple consiste à traduire l'énergie d'activation en un critère sur l'énergie cinétique « utile » lors d'une collision. La théorie cinétique des gaz va permettre de calculer la fréquence de collisions, ainsi que l'énergie cinétique associée aux collisions. On négligera les effets tunnels et les autres effets quantiques.

Partie I. Préliminaire

1. Référentiel de centre de masse
 (a) Écrire l'énergie cinétique totale en fonction de la vitesse du centre de masse V_G, de la vitesse relative $V_{rel} = V_A - V_B = V'_A - V'_B$, de la masse totale $m_A + m_B$ et de la masse réduite μ_{AB}.

 (b) Les densités de probabilités associées aux vitesses V_A et V_B suivent la distribution de Maxwell. Montrer que la distribution $f(V_{rel})$ (quelque soit la vitesse du centre de masse) suit également la distribution de Maxwell pour une particule de masse μ_{AB}.
2. Évolution de la section efficace de réaction σ_r avec l’énergie

Seule la projection V_{utile} du vecteur vitesse V_{rel} sur l’axe reliant les centres de masse des réactifs est utile pour franchir la barrière d’activation. La composante tangentielle ne contribue qu’au moment angulaire orbital. De plus, nous ne considérons implicitement que les énergies de translation, ce qui ne devrait être valable que pour des gaz monoatomiques (Nous ne considérons pas l’énergie emmagasinée dans les modes de vibration par exemple).

Une collision mènera à une réaction chimique si l’énergie cinétique utile, $E_{\text{utile}} = \frac{1}{2}\mu_{AB}V_{\text{utile}}^2$, est supérieure à l’énergie d’activation E_R. Pour chaque vitesse V_{rel}, on trouve donc une valeur maximale du paramètre b, notée b_{max}, définissant la section efficace de réaction. Retrouver l’évolution, présentée en Fig. 2.3, de la section efficace de réaction $\sigma_r = \pi b_{\text{max}}^2$, en fonction de la section efficace de collision $\sigma_{AB} = \pi d_{\text{AB}}^2$, de l’énergie d’activation E_R et l’énergie cinétique relative $E_{\text{rel}} = \frac{1}{2}\mu_{AB}V_{\text{rel}}^2$.

Partie II. Vitesse de réaction et équilibre

On considère que les densités volumiques des molécules A, B, C et D (respectivement n_A, n_B, n_C et n_D) sont homogènes dans tout le volume de réaction.

1. On s’intéresse à une unique molécule A. Pour une vitesse V_{rel} donnée, écrire le nombre de collisions par unité de temps, subies par la molécule A avec des molécules B, pouvant provoquer une réaction chimique. ►

2. En intégrant sur l’ensemble des vitesses V_{rel}, écrire le nombre de collisions par unité de temps, subies par la molécule A avec des molécules B, pouvant provoquer une réaction chimique. ►

3. En déduire le nombre de collisions v^+, par unité de volume et par unité de temps, entre des molécules A et B entraînant la formation des molécules C et D. ►

4. La température joue donc un rôle à la fois dans l’énergie de collision ainsi que dans la fréquence des collisions. La vitesse de réaction suit une loi du type $kn_A n_B$. Comparer la valeur du coefficient k à la loi d’Arrhenius. ►

5. De manière équivalente, exprimer le nombre de collisions v^- entre les molécules C et D. En déduire la relation entre les différentes concentrations à l’équilibre. ►

Partie III. Comparaison à l’expérience

La Fig. 2.4 donne une vision schématique de l’effet de l’orientation relative des réactifs pendant une collision pour la réaction $2\text{HI} \rightarrow \text{H}_2 + \text{I}_2$.

Note : Vous pourrez montrer que le jacobien associé au changement de variable $(V_A, V_B) \rightarrow (V_C, V_{\text{rel}})$ vaut -1.
Figure 2.4 – Effet de l’orientation relative des réactifs pendant une collision [13].

Pour cette réaction en phase gazeuse, le ratio entre la vitesse de réaction mesurée et celle calculée avec le modèle précédent vaut 1/2. Expliquer qualitativement ce facteur, dit « facteur stérique ». ▶

Note : De manière plus générale, le modèle présenté néglige plusieurs phénomènes :
− Les effets d’orientations des molécules ne sont pas pris en compte : ajout d’un facteur stérique.
− Le modèle néglige la variation d’entropie, souvent faible. Une théorie des complexes activés, prenant en compte les vibrations des molécules peut en partie y remédier. La puissance de la température intervenant dans la constante des vitesses change alors (nécessite une approche canonique).
− Nous ne prenons pas en compte les effets éventuels liés à la présence d’un solvant (sur la fréquence des rencontres ou sur l’énergie d’activation).
− Etc.
Chapitre 3

Entropie et information

Liste des exercices

1. Probabilités conditionnelles .. 18
2. Expression de l’entropie de Shannon .. 18
3. Dé pipé ... 19
4. Codage optimal .. 19
5. Codage d’événements rares .. 19

Exercice 1. Probabilités conditionnelles

Une maladie est présente chez 1% de la population. Le test de dépistage est tel qu’il est positif chez 95% des malades et négatif chez 97% des personnes saines.

1. Exprimer de deux façons la probabilité qu’une personne soit malade et voie son test positif. ▶
2. Exprimer de deux façons la probabilité qu’une personne soit saine et voie son test positif. ▶
3. Une personne voit son test positif. Quelle est la probabilité pour qu’elle soit malade? ▶

Exercice 2. Expression de l’entropie de Shannon

On cherche à retrouver l’expression de l’entropie de Shannon. On se place tout d’abord dans le cas d’une variable discrète. On considère un ensemble de M événements se déroulant avec une probabilité p_1,\ldots,p_M (ou bien une variable aléatoire X prenant les valeurs x_1,\ldots,x_M avec les probabilités p_1,\ldots,p_M). À l’instar de Shannon, on cherche à définir une fonction $S(p_1,\ldots,p_M)$ qui quantifie le manque d’information sur la réalisation de tel ou tel événement. Pour cela, on impose à S un certain nombre de propriétés que l’on estime raisonnables :

(P1) la fonction S est une fonction continue des probabilités p_1,\ldots,p_M,
(P2) $S(p_1,\ldots,p_M) \leq S(1/M,\ldots,1/M)$,
(P3) $S(p_1,\ldots,p_M,0) = S(p_1,\ldots,p_M)$,
(P4) propriété d’additivité : soient A l’événement global correspondant aux événements de 1 à m de probabilité $q_A = \sum_{i=1}^m p_i$ et B l’événement global correspondant aux événements de $m+1$ à M de probabilité $q_B = \sum_{i=m+1}^M p_i$. Alors on a :

$$S(p_1,\ldots,p_M) = S(q_A,q_B) + q_A S\left(p_1\frac{q_A}{p_A},\ldots,p_m\frac{q_A}{p_A}\right) + q_B S\left(p_{m+1}\frac{q_B}{p_B},\ldots,p_M\frac{q_B}{p_B}\right)$$

On va montrer que l’expression $S(p_1,\ldots,p_M) = -k\sum_{i=1}^M p_i \ln p_i$ est bien la seule solution. On note $\sigma(M) = S(1/M,\ldots,1/M)$ l’entropie du cas équiboablé.

2. Montrer que $\sigma(M)$ est une fonction croissante de M.

3. Montrer que $S(1) = 0$. Commenter.
4. Généraliser la quatrième propriété pour montrer que

$$S(p_1, \ldots, p_m) = S(q_1, \ldots, q_\alpha) + \sum_{i=1}^{\alpha} q_i S\left(\frac{p_{m\alpha+1}}{q_i}, \ldots, \frac{p_m}{q_i}\right)$$

avec $q_i = p_{m\alpha+1} + \ldots + p_m$. ($m_0 = 0$).
5. En déduire que $\sigma(MN) = \sigma(M) + \sigma(N)$.
6. Soient $(l, m, n) \in \mathbb{N}^3$ tels que $2^m \leq l^n < 2^{m+1}$. Montrer que :

$$\frac{m}{n} \leq \frac{\sigma(l)}{\sigma(2)} < \frac{m+1}{n}.$$

En déduire que $\sigma(M) = k \ln M$. Quel est le signe de k ?
7. En déduire que, pour $(p_1, \ldots, p_M) \in \mathbb{Q}^M$, $S(p_1, \ldots, p_M) = -k \sum_{i=1}^{M} p_i \ln p_i$.
8. En déduire l’entropie de Shannon dans le cas discret pour des probabilités quelconques.
9. Généraliser au cas continu. Pour fixer les idées, on considèrera le cas d’une variable aléatoire x prenant des valeurs continues sur un intervalle $[a, b]$.

Exercice 3. Dé pipé

En lançant un dé à six faces, on constate que le 6 sort deux fois plus souvent que le 1. En l’absence d’information supplémentaire, à quelle distribution des valeurs du dé peut-on s’attendre ?

Exercice 4. Codage optimal

On considère un langage avec 3 sons (« crac », « boum », « hue ») que l’on notera A, B et C. En moyenne A est utilisé deux fois plus que B, et B autant que C. De plus, la séquence des lettres dans un message est aléatoire.

1. Quelle est l’entropie de Shannon associée à cette distribution de lettres ? On rappelle que pour l’entropie de Shannon, en théorie de l’information,

$$k = \frac{1}{\ln 2}.$$

2. De façon générale, quelle est l’entropie maximale transmissible par un canal binaire ? Dans quel cas est-ce réalisé ?
3. Pour un codage donné, on note ℓ le nombre moyen de bits par lettre. Quelle est la valeur minimale de ℓ ?
4. Quelles propriétés doit vérifier un codage optimal pour ce langage ?
5. Proposer un tel codage.

Exercice 5. Codage d’événements rares

On veut encoder une série d’informations météorologiques simplifiées : pour chaque jour, on représente par 1 l’événement « il a plu », par 0 sinon. On suppose ces événements indépendants d’un jour sur l’autre, avec une faible probabilité de pluie : $p = 1/30$.

1. Quelle est, en bits, l’entropie de cette distribution de probabilités ?
2. Combien de bits par jour faut-il utiliser pour encoder cette information si l’on traite les jours l’un après l’autre ?
3. On peut améliorer ce résultat en utilisant des blocs de durée plus longue, par exemple de 30 jours. Proposer un encodage binaire de la série météorologique sur 30 jours, en se concentrant sur les (rares) jours de pluie, qui contiennent toute l’information et qui soit uniquement décodable (il faut donc inclure un séparateur qui signale la fin de la série). Combien de bits par jour utilise-t-il en moyenne ?
4. Peut-on améliorer ce résultat en utilisant une durée de bloc différente ?

Exercice 1. Densité d’états du gaz parfait

On considère un gaz parfait classique constitué de N particules identiques de masse m dans un volume V. On se place dans l’ensemble microcanonique. L’énergie du gaz est notée E_0. Dans toute la suite, Γ désigne l’espace des phases de ce gaz et $d\Gamma$ un volume infinitésimal dans cet espace des phases i.e. $d\Gamma = \prod_{i=1}^{N} dr_i dp_i$, où r_i et p_i désignent respectivement la position et l’impulsion de la particule i. Le Hamiltonien de ce gaz parfait s’écrit alors :

$$H(p_i) = \sum_{i=1}^{N} \frac{p_i^2}{2m}$$

Le but de ce tutorat est de montrer, à partir de la mécanique quantique, que la densité d’états du gaz parfait classique dans l’espace des phases Γ est constante et vaut $1/(N!h)^3$.

1. Dans cette question, on étudie une seule particule quantique dans une boîte cubique de volume $V = L^3$. On considère dans un premier temps des conditions aux limites périodiques sur le bord de la boîte, ce qui signifie que la fonction d’onde ψ vérifie :

$$\psi(x + L, y, z) = \psi(x, y + L, z) = \psi(x, y, z + L) = \psi(x, y, z),$$

la discussion sur le choix de ces conditions aux limites et la comparaison par rapport à des conditions aux limites rigides étant l’objet de la question 2.

(a) Rappeler pourquoi les états d’énergie de cette particule sont décrits par trois entiers n_x, n_y et n_z. On indiquera en particulier la fonction d’onde, l’énergie $E(n_x, n_y, n_z)$ et l’impulsion $(p_{n_x}, p_{n_y}, p_{n_z})$ correspondantes. En déduire que les $(p_{n_x}, p_{n_y}, p_{n_z})$ forment un réseau cubique de maille élémentaire ayant un volume h^3/V.

(b) Effectuer une application numérique pour déterminer si la taille de cette maille élémentaire est « grande » ou « petite. » Dans la suite, on va en plus considérer pour la physique statistique...
la limite thermodynamique $N \to \infty$, $V \to \infty$ à N/V fixé. Est-il légitime de passer à la limite continue ? Montrer alors que la densité d'états propres $D(p)$ définie par :

$$D(p) \, dp = \text{nombre d'états propres d'impulsion } p \text{ à } dp \text{ près}$$

vaut :

$$D(p) = \frac{V}{\hbar^3}.$$

2. Dans cette question, on discute le rôle des conditions aux limites. Calculer la densité d'états propres $D(p)$ pour des conditions aux limites rigides, c'est-à-dire pour lesquelles la fonction d'onde s'annule sur le bord de la boîte. Commenter votre résultat.

3. Rappeler la définition de la densité d'états $D(E)$. À partir du résultat (1b), montrer que :

$$D(E) = \frac{V}{\hbar^3 (2m)^{3/2}} \frac{1}{\Gamma(3N/2 + 1)}.$$

4. Le résultat (1b) montre que le nombre d'états d'une particule libre dans l'élément de volume $dr \, dp$ de l'espace des phases vaut $1/(\hbar^3) \, dr \, dp$. Pour N particules, pouvez-vous justifier pourquoi le nombre d'états dans $d\Gamma$ vaut $1/(N! \hbar^{3N}) \, d\Gamma$?

5. En vous aidant de l'annexe A, montrer que le nombre d'états microscopiques $\Phi(E_0, V, N)$ dont l'énergie est inférieure à E_0 est donné par :

$$\Phi(E_0, V, N) = \frac{1}{N! \hbar^{3N}} \frac{V^N (2\pi m E_0)^{3N/2}}{\Gamma(3N/2 + 1)}.$$

Exercice 2. Entropie du gaz parfait

Le but de ce tutorat est de calculer l'entropie microcanonique $S(E_0, V, N)$ d'un gaz parfait classique. Pour cela, on reprend les notations et les résultats du tutorat précédent. En particulier, on a vu que le nombre d'états microscopiques $\Phi(E_0, V, N)$ dont l'énergie est inférieure à E_0 vaut :

$$\Phi(E_0, V, N) = \frac{1}{N! \hbar^{3N}} \frac{V^N (2\pi m E_0)^{3N/2}}{\Gamma(3N/2 + 1)}.$$

(4.1)

Note : Les propriétés de la fonction Γ sont décrites à l'annexe A.

1. Montrer que le nombre d'états microscopiques dont l'énergie est comprise entre E_0 et $E_0 + \Delta E$ avec $\Delta E/E_0 \ll 1$ vaut $\rho(E_0, V, N) \Delta E$ avec :

$$\rho(E_0, V, N) = \frac{3N}{2E_0}.$$

En déduire qu'à la limite thermodynamique, le logarithme du nombre d'états dont l'énergie est comprise entre E_0 et $E_0 + \Delta E$ avec $\Delta E/E_0 \ll 1$ est à peu près égal au logarithme du nombre d'états dont l'énergie est inférieure à E_0.

2. En utilisant l'appendice, établir alors la formule de Sackur et Tetrode pour l'entropie microcanonique du gaz parfait :

$$S(E, V, N) = Nk \left\{ \ln \left[\frac{V}{N} \left(\frac{4\pi m E}{3Nh^2} \right)^{3/2} \right] + \frac{5}{2} \right\}.$$

3. **Distribution de l'énergie d'un sous-système**

On propose comme application de la formule (4.1) d'étudier le système Σ formé par deux gaz parfaits, que l'on appellera systèmes Σ_1 et Σ_2, placés dans deux compartiments séparés par une paroi uniquement conductrice de l'énergie. Le système total Σ forme un système microcanonique d'énergie E. Initialement, les deux gaz parfaits sont dans les états (E_1, V_1, N_1) et $(E - E_1, V_2, N_2)$ et on cherche à déterminer les énergies finales de Σ_1 et Σ_2.
Exercice 3. Tests de l’hypothèse d’ergodicité

On considère un oscillateur harmonique classique O à une dimension de masse m, de pulsation ω et d’énergie E. Le Hamiltonien de O vaut donc :

$$H(x, p) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2.$$

On cherche alors à déterminer si ce système est ergodique ou non.

Partie I. Discussion qualitative

Comparer dans l’espace des phases (x, p) la trajectoire temporelle de O, obtenue à partir des équations du mouvement, et la surface d’énergie E i.e. d’équation $H(x, p) = E$.

Partie II. Discussion quantitative

1. Calculer les valeurs moyennes temporelles $\langle x \rangle_T$ et $\langle x^2 \rangle_T$, respectivement de la position $x(t)$ et de son carré $x^2(t)$.

2. Pour tester l’hypothèse d’ergodicité, il faut calculer ces mêmes valeurs moyennes pour un ensemble statistique doté de la distribution de probabilité :

$$\rho_E(x, p) = \alpha \delta(H(x, p) - E),$$

où α est une constante de normalisation. On rappelle que cette distribution correspond à dire que tous les états d’énergie E sont équiprobables et que $\rho_E(x, p) \, dx \, dp$ donne le nombre d’états microscopiques autour de (x, p) dans l’espace des phases. Ainsi, la valeur moyenne statistique $\langle x \rangle_S$ de la position vaut :

$$\langle x \rangle_S = \int x \rho_E(x, p) \, dx \, dp.$$

Pour faire tous les calculs, on propose le changement de variables $(x, p) \rightarrow (\phi, J)$ suivant :

$$x(\phi, J) = \sqrt{\frac{2J}{m\omega}} \sin \phi, \quad p(\phi, J) = \sqrt{2m\omega J} \cos \phi.$$

(a) Montrer que, par ce changement de variable, on a :

$$\delta(H(x, p) - E) \, dx \, dp = \delta(\omega J - E) \, d\phi \, dJ.$$

(b) Pourquoi peut-on en déduire qu’il y a équiprobabilité de la phase ϕ ?

(c) Montrer alors que $\alpha = \omega/2\pi$.

(d) Calculer enfin les valeurs moyennes statistiques $\langle x \rangle_S$ et $\langle x^2 \rangle_S$. L’hypothèse d’ergodicité est-elle vérifiée ?
Partie III. Système de deux oscillateurs

On considère maintenant un système formé de deux oscillateurs d’énergie totale E pour lequel on se limitera à une discussion qualitative. Quelle conclusion peut-on tirer \textit{a priori} de la comparaison entre la trajectoire temporelle de ce système dans l’espace des phases et la surface d’énergie E?

Exercice 4. Oscillateur harmonique

On considère un ensemble de N oscillateurs harmoniques unidimensionnels de même masse m et pulsation ω. Ces oscillateurs sont supposés discernables et indépendants. Le Hamiltonien du système vaut donc:

$$H(\{x_i, p_i\}) = \sum_{i=1}^{N} \left(\frac{p_i^2}{2m} + \frac{1}{2}m\omega^2 x_i^2 \right).$$

Le but de cet exercice est d’étudier l’ensemble microcanonique correspondant à ce système d’énergie E et constitué de N oscillateurs.

1. Justifier que la densité d’états en énergie d’un seul oscillateur harmonique vaut $\rho(E) = 1/\hbar \omega$.

2. On cherche ensuite à calculer la densité d’états $\rho(X, P)$ d’un seul oscillator harmonique dans l’espace des phases. Pour cela, on passe aux coordonnées $X = \sqrt{m\omega^2/2} x$ et $P = p/\sqrt{2m}$, telles que $X^2 + P^2 = E$ définit la région circulaire de l’espace des phases accessible à un oscillateur harmonique d’énergie E. Justifier que le nombre d’états compris dans une couronne circulaire de rayon $R = \sqrt{E}$ et d’épaisseur dR vaut:

$$dN(R, dR) = \frac{2\sqrt{E}}{\hbar \omega} dR.$$

En déduire que la densité d’états dans l’espace (X, P) s’écrit $\rho(X, P) = 2/(\hbar \omega)$. En conclure que la densité d’états dans l’espace des phases est uniforme et vaut $\rho(x, p) = 1/\hbar$.

3. Montrer que pour le système de N oscillateurs harmoniques, le nombre d’états microscopiques dont l’énergie est inférieure à E s’écrit :

$$\Phi(E, N) = \frac{1}{hN} \int d\Gamma,$$

où l’intégrale porte sur le domaine de l’espace des phases défini par $H(\{x_i, p_i\}) \leq E$.

4. Montrer que :

$$\Phi(E, N) = \frac{1}{hN} \left(\frac{2}{\omega} \right)^N V_{2N} \left(\sqrt{E} \right),$$

où $V_D(R)$ désigne le volume d’une boule de rayon R à D dimensions. Achever alors le calcul de $\Phi(E, N)$ grâce aux tutorats précédents.

5. En déduire l’entropie microcanonique $S(E, N)$ puis la température microcanonique $T(E, N)$ du système de N oscillateurs harmoniques.

Exercice 5. Élasticité du caoutchouc

On modélise une chaîne de polymère par une chaîne unidimensionnelle constituée de n segments articulés de longueur a. Les orientations \rightarrow et \leftarrow de ces segments sont équivalentes du point de vue énergétique. La distance séparant les deux extrémités de la chaîne est notée L. Enfin, cette chaîne est maintenue à L et énergie fixées. La chaîne est représentée schématiquement sur la Fig. 4.1.

1. Soit une configuration avec n_+ segments \rightarrow et n_- segments \leftarrow. Écrire les deux équations satisfaites par n_+ et n_-.

2. Déterminer l’entropie $S(L, n)$ de la chaîne.

3. Montrer alors que la tension F de cette chaîne vaut :

$$\frac{F}{T} = -\frac{\partial S}{\partial L} = \frac{k_B}{2a} \ln \left(\frac{1 + L/(na)}{1 - L/(na)} \right).$$
4. Que donne cette expression dans la limite $L \ll na$? Montrer que, dans cette limite, on a :

$$\frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_F = -\frac{1}{T}.$$

Commenter ce résultat. Pourquoi peut-on parler de « ressort entropique » ? ▶36
Chapitre 5

L’ensemble canonique

Liste des exercices

1. Gaz de « sphères dures » à une dimension 25
 I. Étude dans l’ensemble canonique 26
 II. Étude dans l’ensemble microcanonique 26
2. Modèle simple de cristal paramagnétique 26
 I. Discussion qualitative 27
 II. Discussion quantitative 27
 III. Application à la désaimantation adiabatique ... 27
3. Glace à une dimension 27
4. Défauts de Frenkel dans les cristaux 28
 I. Approche microcanonique 28
 II. Approche canonique 29
5. Molécules diatomiques 29
 I. Molécules diatomiques hétéro-nucléaires 29
 II. Molécules diatomiques homonucléaires 30
 Considérations générales 30
 Molécule H₂ ... 30
 Molécule D₂ ... 31
 III. Dissociation du dioxygène 31
 Contribution des termes d’excitation électronique .. 31
 Calcul de la constante de l’équilibre de dissociation du dioxygène .. 31
 Comparaison entre théorie et expérience 32
6. Sublimation ... 32
 I. Propriétés thermodynamiques du gaz 32
 II. Propriétés thermodynamiques du solide 32
 III. Condition d’équilibre entre le solide et sa vapeur .. 33
 IV. Pression du système à l’équilibre 33

Exercice 1. Gaz de « sphères dures » à une dimension

Le gaz de « sphères dures » est un modèle simplifié de gaz non parfait classique constitué de particules infiniment dures, qui n’interagissent que lorsqu’elles sont en contact. Nous en examinons ici une version à une dimension schématisée sur la Fig. 5.1.

Un segment de longueur ℓ, qui constitue le « volume » de ce système unidimensionnel, contient N particules qui sont des bâtons rigides, de longueur ℓ, repérés par l’abscisse x₁ de l’une de leurs extrémités. Deux particules voisines dont les abscisses diffèrent de x interagissent avec le potentiel u(x) représenté sur la Fig. 5.1 :

\[u(x) = +\infty \quad \text{pour} \quad x \leq \ell \quad \text{et} \quad u(x) = 0 \quad \text{pour} \quad x > \ell. \]
Partie I. Étude dans l’ensemble canonique

1. Donner l’expression de la fonction de partition canonique de ce gaz unidimensionnel et montrer qu’elle se factorise en \(Z = Z_K \cdot Z_U \) où \(Z_U \) est la partie associée à l’énergie potentielle des particules. Calculer \(Z_K \). On considérera ici le cas de particules discernables : l’indiscernabilité des particules sera prise en compte dans le calcul de la partie associée à l’énergie potentielle. \(^{37}\)

2. Justifier simplement que la partie potentielle vaut \(\frac{1}{N!} (L - N\ell)^N \).

3. Exprimer l’énergie libre du gaz et sa pression \(P \). Donner l’équation d’état de ce gaz non parfait. Commenter le résultat. Aurait-on pu le prévoir sans calcul? \(^{38}\)

4. Calculer l’énergie moyenne \(\mathcal{E} \) du gaz et sa chaleur spécifique à « volume » constant \(C_L \). Commenter le résultat. \(^{39}\)

5. Calculer le potentiel chimique du gaz et le comparer à celui d’un gaz parfait (unidimensionnel) à la même température. Commenter le résultat. \(^{40}\)

Partie II. Étude dans l’ensemble microcanonique

1. Calculer le volume \(\Phi(E_0, L, N) \) de la portion d’espace des phases correspondant à tous les états du gaz dont l’énergie est inférieure à une valeur donnée \(E_0 \). \(^{41}\)

2. En déduire la température du gaz en fonction de son énergie \(E_0 \) puis exprimer la pression \(p \). \(^{42}\)

3. Comparer les résultats avec ceux obtenus dans l’ensemble canonique.

Exercice 2. Modèle simple de cristal paramagnétique

On considère \(N \) ions de spin \(1/2 \), et de moment magnétique \(\mu \), fixés aux noeuds d’un réseau cristallin. Les ions sont supposés discernables et le cristal est placé dans un champ magnétique uniforme \(B \). La direction du champ détermine l’axe de quantification \((Oz) \). Si on désigne par \(\mu_i \) la composante du \(i^{\text{ème}} \) moment magnétique \((1 \leq i \leq N) \) suivant \((Oz) \), celle-ci ne peut prendre que les valeurs \(\mu \) correspondant aux deux états de spin \(\pm 1/2 \). On suppose qu’il n’y a pas d’interaction mutuelle des moments magnétiques de telle sorte que l’énergie associée à une configuration \(\{\mu_i\} \) vaut :

\[
E(\{\mu_i\}) = -\sum_{i=1}^{N} \mu_i B
\]

Le but de cet exercice est d’étudier les propriétés de ce cristal dans l’ensemble canonique. En particulier, en étudiant le comportement de la chaleur spécifique et de l’aimantation moyenne par site en fonction de la température et du champ magnétique, nous allons montrer que le cristal possède un comportement paramagnétique.

1. Une estimation plus rigoureuse du volume exclu sera discutée en cours.
Partie I. Discussion qualitative

1. Dans le cadre de l’approche micro-canonique, montrer que la température micro-canonique du cristal peut être négative en effectuant une analogie avec l’étude du caoutchouc (Chap. 4, ex. 5.).

2. Quel est a priori le paramètre sans dimension qui contrôle le comportement du cristal ? Indiquer les comportements attendus en fonction de ce paramètre pour la chaleur spécifique $C = (\frac{\partial E}{\partial T})_N$ et pour l’aimantation moyenne par site \mathcal{M} définie par :

$$\mathcal{M} = \frac{1}{N} \sum_i \mu_i .$$

Partie II. Discussion quantitative

1. Calculer la fonction de partition canonique du cristal à la température T. En déduire l’énergie libre F, l’énergie moyenne \mathcal{E} et la chaleur spécifique C. Discuter ces résultats. ❧43

2. Calculer \mathcal{M} ainsi que la susceptibilité $\chi = (\frac{\partial \mathcal{M}}{\partial B})_T$. Discuter ces résultats. En particulier, justifier le caractère paramagnétique du cristal. ❧44

3. Calculer la fluctuation de l’aimantation $(\Delta \mathcal{M})^2 = \mathcal{M}^2 - \mathcal{M}^2$ et comparer à la susceptibilité. ❧45

4. Calculer finalement la susceptibilité en champ nul $\chi_0 = \lim_{B \to 0} \chi$ en fonction de la température. Commenter. Comment s’appelle la loi obtenue ? ❧46

Partie III. Application à la désaimantation adiabatique

1. Calculer l’entropie $S(N, T, B)$. ❧47

2. Le principe de désaimantation adiabatique pour un système paramagnétique isolé thermiquement consiste à baisser très lentement le champ magnétique de telle sorte qu’à chaque instant le système se trouve dans un état d’équilibre pour obtenir une transformation adiabatique réversible (et donc à entropie constante). Pouvez vous justifier pourquoi cette technique est utilisée pour obtenir de très basses températures ?

Exercice 3. Glace à une dimension

Lorsque deux atomes sont liés par une liaison hydrogène, l’atome d’hydrogène localisé entre les deux est fortement lié à l’un, appelé donneur, et faiblement à l’autre, appelé accepteur. De ce fait, la liaison n’est pas symétrique et l’atome d’hydrogène est plus proche du donneur.

Nous allons étudier un modèle caricatural du réseau de liaisons hydrogène dans la glace d’eau. Dans ce modèle à une dimension, les atomes d’oxygène sont alignés et équidistants. Chaque atome est impliqué dans exactement quatre liaisons hydrogène à raison de deux avec chacun de ses voisins. Il est donneur pour deux liaisons et accepteur pour les deux autres. Chacune de ces liaisons est supposée séparément identifiable. On a donc six arrangements possibles autour d’un atome d’oxygène (les cercles blancs représentent les atomes d’oxygène, les cercles noirs les atomes d’hydrogène, les lignes continues les liaisons hydrogène) :

![Diagramme de six arrangements possibles](image)

On suppose toutes ces conformations équivalentes, c’est-à-dire que molécules linéaires et molécules coudées ne diffèrent pas en énergie.

Il résulte des hypothèses du modèle quatre possibilités pour lier deux voisins :

![Diagramme des quatre possibilités](image)
Les « doubles liaisons » de type (a) ou (b) correspondent à une énergie totale de liaison $-\epsilon_1$, celles de type (c) ou (d) à une énergie totale de liaison $-\epsilon_2$. On prend $\epsilon_1 > \epsilon_2 \geq 0$.

On considère un système de N molécules. Pour simplifier les calculs, on impose des conditions aux limites périodiques, c'est-à-dire que la chaîne se réfère sur elle-même, les molécules 1 et N étant voisines. Cela revient à disposer les molécules sur un cercle. On se place dans l'ensemble canonique et on note T la température. On pose $\beta = (k_B T)^{-1}$, où k_B est la constante de Boltzmann.

1. On suppose que la liaison entre les molécules 1 et 2 est de type (a) ou (b). Combien de configurations globales du système sont compatibles avec cette hypothèse ? Quelle est leur énergie ?
2. Mêmes questions lorsque la liaison est de type (c) ou (d).
3. En déduire que la fonction de partition canonique du système est donnée par :

$$Z(\beta, N) = 2 (e^{\beta \epsilon_1})^N + (2 e^{\beta \epsilon_2})^N.$$

4. Donner l'expression de l'énergie libre du système $F(\beta, N)$.
5. On définit l'énergie libre par molécule $f(\beta)$ par :

$$f(\beta) = \lim_{N \to \infty} \frac{F(\beta, N)}{N}.$$

En cherchant à approcher $Z(\beta, N)$ par son plus grand terme, montrer que $f(\beta)$ prend une expression différente de part et d'autre d'une température T_0 à calculer.

6. En déduire les expressions de $e(\beta)$ et de $s(\beta)$, respectivement énergie interne et entropie par molécule, de part et d'autre de T_0.

7. Pour une grandeur moléculaire $x(\beta)$, on définit :

$$\Delta x = \lim_{\beta \to \beta_0^+} x(\beta) - \lim_{\beta \to \beta_0^-} x(\beta),$$

avec $\beta_0 = (k_B T_0)^{-1}$. Calculer Δf, Δe et Δs. Quelle relation y a-t-il entre Δe et Δs ?

8. Tracer sur un même graphe $f(\beta)$, $e(\beta)$ et $T \cdot s(\beta)$.

9. À quel phénomène correspond la température T_0 ? Commenter.

Exercice 4. Défauts de Frenkel dans les cristaux

Dans son état fondamental, c'est-à-dire à température nulle, les N atomes d'un cristal sont disposés selon un réseau parfaitement régulier. Au niveau du site occupé par un atome, le potentiel créé par les $(N - 1)$ autres atomes présente un minimum, mais il peut également présenter des minima secondaires en d'autres points appelés « sites interstitiels ». En adoptant comme référence des énergies celle du niveau fondamental, ces sites correspondent à une énergie ϵ positive et sont inoccupés à température nulle. Au prix de l'énergie ϵ, un atome peut migrer depuis un nœud du réseau vers un site interstitiel. Ainsi, lorsqu'on chauffe le cristal, le nombre de défauts augmente. Ce processus engendre du désordre et accroît l'énergie interne du cristal. Un modèle très simplifié consiste à considérer que l'énergie interne, associée à une configuration comportant n défauts, s'écrit $E = n \epsilon$.

Partie I. Approche microcanonique

1. Déterminer le nombre de microétats correspondant à une répartition de $(N - n)$ atomes sur les N sites du réseau et de n atomes sur les N' sites interstitiels (les sites sont discernables et les atomes indiscernables).

2. Déterminer l'expression de la température microcanonique. En déduire l'expression du nombre de défauts en fonction de la température du cristal. Étudier le comportement asymptotique de n à basse et à haute température. Représenter et commenter l'évolution de n avec la température.

3. Exprimer le rapport n/N à température ambiante pour $N' = N$ et $\epsilon = 0, 5$ eV.
CHAPITRE 5. L'ENSEMBLE CANONIQUE 29

Partie II. Approche canonique

1. Exprimer la fonction de partition canonique \(Z \) du cristal à la température \(T \) à partir des niveaux d'énergie \(E_n \) accessibles et de leur facteur de dégénérescence \(g_n \). La somme qui intervient ici n'est pas calculable explicitement, mais dans la limite \(N \gg 1 \), on admettra que l'on peut approcher le logarithme de cette somme par le logarithme de son terme dominant. ▶

2. En l'identifiant au nombre le plus probable, déterminer le nombre moyen \(\bar{n} \) de défauts cristallins à la température \(T \). On pourra utiliser le dénombrement effectué à la question 1 et donner une expression approchée de \(\bar{n} \) lorsque \(\bar{n} \ll N \) et \(\bar{n} \ll N' \).

3. Exprimer alors l'énergie libre, l'énergie interne et l'entropie du cristal dans le cas particulier \(N' = N \). Déterminer la variance en énergie \((\Delta E)^2\) puis le rapport de l'écart-type à l'énergie moyenne \(\Delta E/E \). Préciser un équivalent de ce rapport lorsque \(N \) tend vers l'infini. ▶

4. Déterminer la capacité calorifique \(C_D \) associée aux défauts. Représenter et interpréter son évolution avec la température. ▶

5. À partir des données numériques de la question 3, calculer la contribution des défauts à la chaleur spécifique du cristal à température ambiante. Comparer cette contribution à celle des vibrations du réseau cristallin que l'on estimera à partir de la loi de Dulong et Petit. ▶

Exercice 5. Molécules diatomiques

Partie I. Molécules diatomiques hétéro-nucléaires

On considère un gaz parfait de \(N \) molécules diatomiques identiques à la température \(T \) dans le volume \(V \). On suppose que la densité de ce gaz est suffisamment faible pour que la fonction de partition totale \(Z = z^N/N! \), où \(z \) est la fonction de partition correspondant à une seule molécule.

Moyennant certaines approximations, le hamiltonien mono-moléculaire peut s'écrire comme une somme de cinq termes, \(H = H_{\text{trans}} + H_{\text{elec}} + H_{\text{vib}} + H_{\text{rot}} + H_{\text{nucl}} \), correspondant aux degrés de liberté suivants :

- \(H_{\text{trans}} \) : translation du centre de masse,
- \(H_{\text{elec}} \) : mouvement des électrons dans le champ des noyaux,
- \(H_{\text{vib}} \) : vibration de la molécule au voisinage de sa longueur d'équilibre,
- \(H_{\text{rot}} \) : rotation d'ensemble autour du centre de masse,
- \(H_{\text{nucl}} \) : mouvement des nucléons au sein des noyaux.

Il en résulte que, dans chaque état \(\alpha \) de la molécule, on peut écrire la fonction d'état comme \(\Psi^\alpha = \psi^\alpha_{\text{trans}} \cdot \psi^\alpha_{\text{elec}} \cdot \psi^\alpha_{\text{vib}} \cdot \psi^\alpha_{\text{rot}} \cdot \psi^\alpha_{\text{nucl}} \) et l'énergie vaut \(\epsilon^\alpha = \epsilon^\alpha_{\text{trans}} + \epsilon^\alpha_{\text{elec}} + \epsilon^\alpha_{\text{vib}} + \epsilon^\alpha_{\text{rot}} + \epsilon^\alpha_{\text{nucl}} \).

Dans cet exercice, on considère une molécule AB, où A et B sont deux atomes différents (éventuellement deux isotopes d’un même élément) de masses \(m_A \) et \(m_B \). Dans ce cas, les cinq types de mouvements décrits plus hauts sont indépendants.

1. Montrer que, dans ces conditions, la fonction de partition mono-moléculaire peut s'écrire \(z = z_{\text{trans}} \cdot z_{\text{elec}} \cdot z_{\text{vib}} \cdot z_{\text{rot}} \cdot z_{\text{nucl}} \), en explicitant le sens de chaque terme.

2. Rappeler l'expression de \(z_{\text{trans}} \) dans le cadre d’un traitement classique. ▶

3. On suppose que l’énergie de vibration est celle d’un oscillateur harmonique quantique de pulsation \(\omega \). Donner l’expression de \(z_{\text{vib}} \). ▶

4. Les niveaux d’énergie d’une molécule en rotation considérée comme un rotateur rigide sont donnés par :

\[
\epsilon_{\text{rot}} = \frac{\hbar^2}{2I} J(J+1)
\]

où \(J \) (\(0 \leq J \leq \infty \)) est le nombre quantique de rotation et \(I \) le moment d’inertie de la molécule autour de son centre de masse. On rappelle qu’il y a \(2J+1 \) états dégénérés ayant cette valeur de \(\epsilon_{\text{rot}} \). Il est utile d’introduire la température caractéristique \(\theta_{\text{rot}} = \hbar^2/(2Ik_B) \) et le rapport \(x = \theta_{\text{rot}}/T \) pour alléger les notations.

(a) Écrire la fonction de partition \(z_{\text{rot}} \). ▶

2. On rappelle que cette loi est obtenue en supposant que, dans le cristal idéal, chaque atome se trouve dans un puits de potentiel harmonique qui est traité dans le cadre de la statistique classique.
(b) Dans le régime de température élevée \((x \ll 1)\), en utilisant la formule d'Euler-Mac Laurin donnée en appendice (vous n'effectuerez pas le calcul), il est possible de montrer que :

\[
 z_{\text{rot}} = \frac{1}{x} \left[1 + \frac{x}{3} + \frac{x^2}{15} + o(x^2) \right].
\]

En déduire la contribution \(f_{\text{rot}}\) de la rotation à l'énergie libre par molécule, ainsi que l'énergie interne \(u_{\text{rot}}\) et la capacité calorifique \(c_{v,\text{rot}}\) associées. \(^{59}\)

(c) Dans la limite opposée des basses températures \((x \gg 1)\), seuls les niveaux de basse énergie seront peuplés. Calculer alors \(f_{\text{rot}}\), \(u_{\text{rot}}\) et \(c_{v,\text{rot}}\) à l'ordre dominant en fonction de \(x\). \(^{60}\)

(d) En déduire l'allure de \(c_{v,\text{rot}}\) en fonction de \(T/\theta_{\text{rot}}\).

(e) Dans le cadre d'un traitement classique, la fonction de partition d'un rotateur rigide est donnée par :

\[
z_{\text{rot}}^{\text{class}} = \frac{1}{\hbar^2} \int e^{-\frac{H_{\text{rot}}(p_\theta,p_\phi)}{k_B T}} d\theta d\phi dp_\theta dp_\phi,
\]

avec

\[
 H_{\text{rot}}(p_\theta,p_\phi) = \frac{1}{2I} \left(p_\theta^2 + \frac{p_\phi^2}{\sin^2 \theta} \right),
\]

les angles \(\theta\) et \(\phi\) étant définis ci-contre.

Vérifier que cette expression permet bien de reproduire le terme dominant de \(z_{\text{rot}}\) dans la limite haute température. \(^{61}\)

5. Concernant \(z_{\text{nucl}}\), seuls contribuent les états nucléaires fondamentaux respectifs des deux atomes. Donner l'expression de \(z_{\text{nucl}}\), qui correspondra donc à une dégénérescence, sachant que les noyaux A et B ont pour spins nucléaires \(I_A\) et \(I_B\). \(^{62}\)

Enfin, \(z_{\text{elec}}\) est estimée à partir des données expérimentales. Un exemple sera traité dans la partie III. à partir des tableaux fournis.

Partie II. Molécules diatomiques homonucléaires

Le cas des molécules diatomiques homonucléaires \(A_2\) n'est pas aussi direct que celui des molécules hétéro-nucléaires étudié à l'exercice précédent. En effet, les noyaux étant alors des particules identiques, conformément au principe de Pauli, la fonction d'onde totale doit satisfaire à certains critères de symétrie par rapport à l'échange des deux noyaux. Si les noyaux ont un spin entier (cas des bosons), la fonction d'onde doit être symétrique. Si le spin nucléaire est demi-entier (cas des fermions), la fonction d'onde doit être antisymétrique. Ces contraintes de symétrie ne permettent plus de considérer les différents types de mouvements moléculaires comme complètement découplés.

Ces effets n'ont pas un impact mesurable sur la thermodynamique de la phase gazeuse que dans le cas des molécules les plus légères, à savoir \(H_2\) (spin nucléaire \(I_H = 1/2\) et \(D_2\) (\(I_D = 1\)). Pour ces systèmes à couche électronique fermée, les seules fonctions d'onde potentiellement affectées par l'opération d'échange des noyaux sont les fonctions d'onde nucléaires et de rotation, si bien que la fonction de partition monomoléculaire doit désormais s'écrire

\[
z = z_{\text{trans}} \cdot z_{\text{elec}} \cdot z_{\text{nucl}} \cdot z_{\text{rot-nucl}}.
\]

On peut montrer que les fonctions d'onde de rotation sont symétriques pour les valeurs de \(J\) pair et antisymétriques pour les \(J\) impairs. En outre, si \(I_A\) est le nombre quantique de spin nucléaire, il existe \((2I_A + 1)^2\) fonctions d'onde nucléaires dégénérées : \(I_A(2I_A + 1)\) de ces fonctions sont antisymétriques et \((I_A + 1)(2I_A + 1)\) sont symétriques.

Considérations générales

Dans le cas de fermions et de bosons, en déduire quels sont les états rotationnels et de spin nucléaire permis par le principe de Pauli ainsi que leur dégénérescence.

Molécule \(H_2\)

On désigne habituellement la fraction des molécules d’hydrogène dont la fonction de spin nucléaire est antisymétrique sous le nom de para-hydrogène et celle des molécules dont la fonction de spin nucléaire
CHAPITRE 5. L’ENSEMBLE CANONIQUE

est symétrique sous le nom d’ortho-hydrogène. On peut donc écrire \(z_{\text{rot-nucl}} = z_p + z_o \), où \(z_p \) et \(z_o \) peuvent être vues comme les fonctions de partition rotationnelles et de spin nucléaire du para-hydrogène et de l’ortho-hydrogène, respectivement. Comme dans l’exercice précédent, on note \(\theta_{\text{rot}} = \hbar^2/(2I k_B) \) et \(x = \theta_{\text{rot}}/T \).

1. Écrire les fonctions de partitions \(z_p \) et \(z_o \). ▶ 63
2. Dans le régime de température élevée \((x \ll 1) \), en utilisant la formule d’Euler-Mac Laurin donnée en annexe A (vous n’effectuerez pas le calcul), il est possible de montrer que :

\[
z_p = \frac{1}{2x} \left[1 + \frac{x}{3} + \frac{x^2}{15} + o(x^2) \right] \quad \text{et} \quad z_o = \frac{3}{2x} \left[1 + \frac{x}{3} + \frac{x^2}{15} + o(x^2) \right].
\]

En déduire l’expression de \(z_{\text{rot-nucl}} \). ▶ 64
3. Dans ce régime de température, en déduire la contribution \(f_{\text{rot-nucl}} \) de la rotation et du spin nucléaire à l’énergie libre par molécule, ainsi que l’énergie interne \(u_{\text{rot-nucl}} \) et la capacité calorifique \(c_v,\text{rot-nucl} \) associées. ▶ 65
4. Dans la limite opposée des basses températures \((x \gg 1) \), calculer \(f_{\text{rot-nucl}}, u_{\text{rot-nucl}} \) et \(c_v,\text{rot-nucl} \) à l’ordre dominant en fonction de \(x \). ▶ 66
5. On note \(r \) le rapport du nombre de molécules d’ortho-hydrogène sur le nombre de molécules de para-hydrogène à l’équilibre. Donner son expression et tracer \(r(T) \). Quels sont les comportements limites de \(r \) pour les hautes et les basses températures ? ▶ 67

Molécule \(D_2 \)

Pour la molécule \(D_2 \) on parle également de para- et d’ortho-deutérium suivant la symétrie de la fonction de spin nucléaire. En utilisant les résultats obtenus pour \(H_2 \), exprimer, pour les hautes températures, le terme dominant de \(z_{\text{rot-nucl}} \) en fonction de \(T \) et de \(\theta_{\text{rot}} \). ▶ 68

Partie III. Dissociation du dioxygène

On considère ici la molécule de dioxygène \(O_2 \) et on néglige l’influence des degrés de liberté nucléaires. En reprenant les notations et les hypothèses de l’exercice précédent, on écrit alors la fonction de partition mono-moléculaire selon \(z = z_{\text{trans}} \cdot z_{\text{élec}} \cdot z_{\text{vib}} \cdot z_{\text{rot}} \).

Contribution des termes d’excitation électronique

1. À l’aide des données fournies en annexe, calculer \(z_{\text{élec}} \) pour l’atome d’oxygène en se limitant à la configuration électronique fondamentale. Comment se simplifie l’expression proposée pour des températures inférieures à 5000 K ?
2. Mêmes questions pour la molécule de dioxygène.

Calcul de la constante de l’équilibre de dissociation du dioxygène

1. Montrer que le potentiel chimique \(\mu \) d’une population de \(N \) particules de fonction de partition \(z \) s’écrit \(\mu = -k_B T \ln(z/N) \).
2. Écrire la condition de l’existence de l’équilibre thermodynamique en terme de potentiel chimique.
3. Montrer que la constante de l’équilibre de dissociation s’écrit :

\[
K_p(T) = \left(\frac{P_0}{P_{\text{ref}}} \right)^2 = \left(\frac{k_B T}{V P_{\text{ref}}} \right)^2 \frac{[z_{\text{trans}}(O) z_{\text{élec}}(O)]^2}{z_{\text{trans}}(O_2) z_{\text{rot}}(O_2) z_{\text{vib}}(O_2) z_{\text{élec}}(O_2) \exp \left(-\frac{\Delta e^0}{k_B T} \right)}.\]

Vérifier qu’elle ne dépend bien que de la température.
4. En utilisant les données numériques fournies et l’ensemble des résultats établis précédemment, donnez l’expression numérique de la constante de l’équilibre de dissociation du dioxygène gazeux en oxygène mono-atomique.
Comparaison entre théorie et expérience

Expérimentalement, on mesure :

<table>
<thead>
<tr>
<th>T (K)</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>log K_T</td>
<td>-19.44</td>
<td>-6.27</td>
<td>-1.85</td>
<td>0.38</td>
</tr>
</tbody>
</table>

L’analyse faite à l’aide des outils de la thermodynamique statistique et de la mécanique quantique permet-elle de rendre compte des constatations expérimentales?

Données expérimentales

- Masse atomique de l’oxygène : 16.00
- Différence d’énergie à $T = 0$ (seuls les niveaux de plus basse énergie sont occupés) entre deux atomes d’oxygène et une molécule de dioxygène : $\Delta e^0 = 5.044$ eV
- Moment d’inertie de la molécule de dioxygène : $I = 19.2 \cdot 10^{-47}$ kg.m2
- Nombre d’onde de vibration de la liaison O-O : $\sigma' = 1580.36$ cm$^{-1}$
- États électroniques de l’atome d’oxygène :

<table>
<thead>
<tr>
<th>terme spectroscopique</th>
<th>dégénérescence</th>
<th>énergie (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fondamental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P_2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3P_1</td>
<td>3</td>
<td>0.0196</td>
</tr>
<tr>
<td>3P_0</td>
<td>1</td>
<td>0.0281</td>
</tr>
<tr>
<td>1D_2</td>
<td>5</td>
<td>1.96</td>
</tr>
<tr>
<td>1S_0</td>
<td>1</td>
<td>4.18</td>
</tr>
</tbody>
</table>

- États électroniques de la molécule de dioxygène :

<table>
<thead>
<tr>
<th>terme spectroscopique</th>
<th>dégénérescence</th>
<th>énergie (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fondamental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^3\Sigma^-$</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$^1\Delta_g$</td>
<td>2</td>
<td>0.975</td>
</tr>
<tr>
<td>$^1\Sigma^+_g$</td>
<td>1</td>
<td>1.594</td>
</tr>
</tbody>
</table>

Exercice 6. Sublimation

Cet exercice étudie la sublimation d’un solide cristallin à partir d’un modèle microscopique simplifié. Un gaz monoatomique et un solide cristallin, constitués des mêmes atomes de masse m et de spin nul (pas de dégénérescence due au spin), coexistent dans une enceinte de volume V, maintenue à la température T par un thermostat. On néglige le volume du cristal par rapport à celui du gaz. La vapeur est assimilée à un gaz parfait classique. Le nombre total d’atomes est N, dont N_g sont dans la phase gazeuse et $N_s = N - N_g$ constituent le cristal.

Partie I. Propriétés thermodynamiques du gaz

Rappeler les expressions de la fonction de partition canonique du gaz $Z_g(T, V, N_g)$, de son énergie libre, de sa pression et de son entropie.

Partie II. Propriétés thermodynamiques du solide

Dans le solide, les atomes sont situés aux nœuds d’un réseau cristallin. Ils sont supposés indépendants les uns des autres, le mouvement de chacun d’eux étant celui d’un oscillateur harmonique à 3 dimensions (modèle d’Einstein, 1907). L’état d’un atome est alors caractérisé par 3 entiers positifs ou nuls n_x, n_y, n_z et son énergie est :

$$\epsilon_{n_x, n_y, n_z} = -\epsilon_0 + \hbar \omega \left(n_x + \frac{1}{2} + n_y + \frac{1}{2} + n_z + \frac{1}{2} \right),$$

où $\epsilon_0 > 0$ et ω sont des constantes caractéristiques du cristal.
1. Que représentent l’énergie ϵ_0 et la pulsation ω? Donner des ordres de grandeur plausibles pour ces deux quantités.

2. Exprimer la fonction de partition canonique du solide $Z_s(T, N_s)$. En déduire son énergie libre. \(71\)

Partie III. Condition d’équilibre entre le solide et sa vapeur

A priori le nombre d’atomes sublimés N_g peut prendre toutes les valeurs entre 0 et N. On se propose de déterminer sa valeur à une température donnée.

1. Comment s’écrit, en fonction de Z_g et Z_s, la fonction de partition canonique de l’ensemble solide-gaz en tenant compte de toutes les valeurs que N_g peut prendre? \(72\)

2. Quelle est la probabilité pour que N_g prenne une valeur particulière N_{g_0}? \(73\)

3. En déduire la valeur la plus probable \tilde{N}_g du nombre d’atomes dans la vapeur. Montrer qu’elle correspond au cas où les potentiels chimiques des atomes dans le solide et dans le gaz sont égaux. \(74\)

4. À température T donnée, étudier les variations de \tilde{N}_g avec V? Montrer que pour T et N fixés, l’équilibre solide-vapeur n’est possible que si le volume V de l’enceinte est inférieur à une certaine valeur V_{max} que l’on déterminera. Que se passe-t-il si on impose au système un volume V supérieur à V_{max}? \(75\)

Partie IV. Pression du système à l’équilibre

On suppose désormais que l’on reste toujours dans le domaine $V < V_{\text{max}}$.

1. Calculer la pression dans l’enceinte de volume V et montrer qu’elle est proportionelle au nombre moyen \overline{N}_g d’atomes sublimés à la température T. \(76\)

2. Sachant que, pour un grand système, \overline{N}_g et \tilde{N}_g coïncident pratiquement, montrer que cette pression (appelée pression de vapeur saturante) est indépendante du volume V et ne dépend que de la température T et des paramètres caractérisant le solide. \(77\)
Exercice 1. Isothermes d’adsorption de Langmuir (1916)

On considère un gaz en contact avec la surface d’un solide qui présente M sites où les molécules de gaz peuvent s’adsorber. La quantité de gaz est assez grande pour que l’on puisse considérer que les propriétés du gaz ne sont pas modifiées par l’adsorption de certaines de ses molécules sur la surface.

On suppose dans un premier temps que chaque site peut adsorber au plus une molécule de gaz. L’énergie d’un site est $\epsilon = 0$ s’il est vide (pas de molécule adsorbée sur ce site) ou $\epsilon = -\epsilon_1$ ($\epsilon_1 > 0$) si une molécule y est adsorbée. Les sites sont supposés assez distants les uns des autres pour que deux molécules adsorbées sur deux sites différents n’interagissent pas. Lorsqu’il y a n molécules adsorbées sur le solide, l’énergie d’adsorption est donc $E = -n\epsilon_1$.

Partie I. Potentiel chimique du gaz

On suppose que le gaz est un gaz parfait classique constitué de molécules de masse m sans degré de liberté interne et confiné dans un volume V.

1. Calculer la fonction de partition grand-canonique et le grand-potentiel de ce gaz. ▶78
2. Montrer comment on peut en déduire l’équation d’état $PV = Nk_B T$ de ce gaz parfait.
3. Montrer que le potentiel chimique d’une molécule dans le gaz peut s’écrire sous la forme :

$$\mu = \mu_0(T) + k_B T \ln (P/P_0),$$

où P est la pression du gaz et P_0 une pression de référence conventionnellement fixée à 1 bar. $\mu_0(T)$ est appelé potentiel chimique standard. Montrer que l’on a : $\mu_0(T) = -k_B T \ln f(T)$ où $f(T)$ est une fonction de la température que l’on explicitera.

Partie II. Propriétés du solide

1. On étudie maintenant le solide susceptible d’adsorber les molécules de gaz. La température T est imposée et le potentiel chimique μ' des molécules adsorbées est fixé par la présence du gaz en contact avec la surface.

(a) Que peut-on dire de μ' ? ▶79
(b) On considère un site d’adsorption particulier sur la surface. Exprimer la fonction de partition grand-canonique correspondante. ▶80
(c) En déduire la fonction de partition grand-canonical pour les M sites d’adsorption et le grand-potentiel correspondant. $\triangleright^8$1

2. Calculer le nombre moyen \bar{n} de molécules adsorbées sur le solide et le taux de couverture de la surface $\tau = \bar{n}/M$ en fonction de ϵ_1, T et μ'. $\triangleright^8$2

3. En tenant compte de l’expression du potentiel chimique des molécules dans le gaz, déterminer l’expression du taux de couverture $\tau(T, P)$ en fonction de la température et de la pression dans le gaz. Représenter qualitativement la variation de τ en fonction de P à deux températures différentes et discuter le résultat obtenu. Ces courbes sont connues sous le nom d’isothermes de Langmuir (1916). $\triangleright^8$3

Exercice 2. Isothermes d’adsorption Brunauer-Emmett-Teller (1938)

On reprend ici le problème de l’adsorption abordé à l’exercice précédent mais on considère maintenant le cas où chaque site d’adsorption peut recevoir plusieurs molécules (formation de plusieurs couches adsorbées). L’énergie d’adsorption de la première molécule est toujours égale à $-\epsilon_1$. Les énergies d’adsorption des molécules suivantes sont égales et valent $-\epsilon_2$ ($\epsilon_2 > 0$, $\epsilon_2 < \epsilon_1$). Par exemple, quand il y a 3 molécules adsorbées sur un site, l’énergie d’adsorption pour ce site est $-\epsilon_1 - 2\epsilon_2$. On suppose que le nombre de molécules qui peuvent s’adsorber sur un site n’est pas limité. Comme précédemment, le potentiel chimique des molécules adsorbées est fixé par la présence du gaz en contact avec le solide.

1. Calculer la fonction de partition grand-canonical pour le solide. $\triangleright^8$4

2. Calculer le taux de couverture $\tau = \bar{n}/M$ en fonction de la température et de la pression P dans le gaz. On pourra poser $c = e^{\beta(\epsilon_1 - \epsilon_2)}$, $P_1(T) = P_0 e^{-\beta(\epsilon_2 + \mu_0(T))}$ et $x = P/P_1(T)$. On montrera que l’on doit avoir $x < 1$ (préciser dans le calcul où cette condition s’introduit) et on vérifiera que le résultat se met sous la forme :

$$\tau = \frac{cx}{(1 - x + cx)(1 - x)}.$$

3. Pour $c \gg 1$, la courbe a l’allure représentée sur la figure 6.1. Quelle est la signification du « coude » observé dans la courbe pour les faibles valeurs de P/P_1 ? Expliquer qualitativement ce comportement dans ce cas.

![Figure 6.1 – Isotherme d’adsorption B.E.T. pour $c = 200$.](image)

Remarque : Les isothermes d’adsorption B.E.T. sont souvent utilisées en physico-chimie pour mesurer la surface effective d’un solide divisé (par exemple une poudre) par l’adsorption d’un gaz sur cette surface.
Chapitre 7
Statistiques quantiques

Liste des exercices

1. Paramagnétisme de Pauli .. 36
2. Les naines blanches ... 37
 I. Considérations préliminaires 37
 Densité d’une naine blanche 37
 Propriétés du gaz de noyaux 37
 Propriétés du gaz d’électrons 37
 II. Équilibre de la naine blanche 38
 Densité volumique d’énergie 38
 Rayon d’équilibre de la naine blanche 38
3. Gaz de bosons indépendants 38
 I. Propriétés générales 38
 Approche grand canonique 38
 Interprétation canonique et température de Bose .. 39
 II. Condensation de Bose-Einstein 39
 Principe .. 39
 Grandeurs thermodynamiques 39

Exercice 1. Paramagnétisme de Pauli

Les électrons possèdent un moment magnétique μ. En présence d’un champ magnétique $B = Bz$, chaque électron contribue pour $-\mu B$ à l’aimantation si son spin est parallèle au champ appliqué, et pour μB si son spin est antiparallèle, avec μB le magnéton de Bohr (positif). En présence du champ, les électrons acquièrent une énergie magnétique $W = -\mu B$. Un électron possède donc une énergie totale :

$$E = \epsilon \pm \mu B,$$

où ϵ désigne son énergie cinétique. $+$ correspond à un spin parallèle, et $-$ à un spin antiparallèle.

Dans l’approximation des électrons libres, et en absence de champ, la densité d’états en énergie s’écrit $g(\epsilon) = \alpha \epsilon^{1/2}$. Chaque état de translation est doublément dégénéré et contient les deux états quantiques $\pm \mu B \hat{z}$. Les électrons obéissent au principe d’exclusion de Pauli et suivent donc la statistique de Fermi-Dirac.

1. Justifier que l’énergie totale d’un système de N électrons à $T = 0$ n’est pas nulle. Définir l’énergie de Fermi ϵ_F et exprimer $\alpha(N, \epsilon_F)$. Estimer cette énergie pour un métal alcalin. \bullet85
2. En présence du champ B, la dégénérescence entre $\pm \mu B \hat{z}$ est levée. Tracer alors la densité d’états $g^B(E)$ pour les électrons avec spin parallèle et antiparallèle au champ. \bullet86
3. À température nulle, donner les expressions des nombres N^+ et N^- d’électrons de spin parallèle et antiparallèle (on fera une approximation utilisant la valeur numérique $\mu_B B/k_B \sim 1$ K). \bullet87
4. Trouver une expression approximative du moment magnétique M et de la susceptibilité χ des électrons à $T = 0$.Comparer au résultat $\chi = N \mu_B^2 / k_B T$ obtenu à haute température pour un ensemble de moments magnétiques indépendants. Expliquer qualitativement la différence entre les deux expressions.

5. Reprendre les deux questions précédentes lorsque la température du système est non nulle, mais faible par rapport à ϵ_F / k_B.

\textit{note : Vous trouverez les intégrales utiles en annexe A.}

\section*{Exercice 2. Les naines blanches}

\textbf{Rappel :} En relativité restreinte, l’énergie totale d’une particule de masse m et d’impulsion p est donnée par $E^2 = p^2 c^2 + m^2 c^4$. Pour des particules ultra-relativistes ($p \gg mc$), on obtient $E \sim pc$.

\section*{Partie I. Considérations préliminaires}

Les naines blanches sont le stade de fin de vie des étoiles de type solaire. Ces astres sont « petits » : leur rayon typique R est de l’ordre de celui de la Terre soit environ 5000 km, à comparer aux 700 000 km de rayon du Soleil. Pourtant, ils ont une masse M quasiment égale à celle du Soleil $M_\odot \simeq 2.10^{30}$ kg. Les régions centrales d’une naine blanche sont composées principalement de C et O (isotopes 12 et 16 respectivement), éléments que l’étoile trop peu massive ne peut pas brûler (il existe en effet des étoiles dans lesquelles les conditions physiques permettent de faire démarrer des réactions nucléaires avec C et O). La température des régions centrales est estimée à 10^7 K.

\subsection*{Déensité d'une naine blanche}

1. Estimez la densité d’une naine blanche, en kg/m3 puis en nombre de noyaux par m3. Calculez le volume disponible par noyau.
2. Que pouvez-vous dire de l’état de la matière dans les régions centrales d’une naine blanche : gaz neutre, ions, plasma dissocié d’électrons d’un côté et de noyaux d’un autre ?

\subsection*{Propriétés du gaz de noyaux}

1. Estimez la température de dégénérescence des noyaux, c’est-à-dire la température en dessous de laquelle les effets quantiques deviennent importants. On rappelle que la \textit{température de Bose} T_B est donnée par :

$$T_B = \frac{2 \pi \hbar^2}{mk} \left(\frac{N}{V} \frac{1}{2s + 1} \right)^{2/3},$$

où m désigne la masse des bosons, N leur nombre total, s leur spin, V le volume et I l’intégrale :

$$I = \frac{2}{\sqrt{\pi}} \int_0^{\infty} \frac{x^{1/2}}{e^x - 1} \, dx \simeq 2,612.$$

Peut-on appliquer la statistique de Maxwell-Boltzmann aux noyaux ?
2. Estimez l’ordre de grandeur de la pression due aux noyaux.

\subsection*{Propriétés du gaz d’électrons}

1. Calculez la valeur de l’impulsion p_F correspondant au \textit{niveau de Fermi} des électrons dans l’hypothèse où la température du système est nulle. En déduire que les électrons qui se trouvent au niveau de Fermi sont relativistes, c’est-à-dire que $p_F \sim mc$ (avec mc la masse d’un électron). Calculez la position du niveau de Fermi pour $T = 0$ K. On prendra pour zéro des énergies, l’énergie au repos des particules.
2. Justifiez \textit{a posteriori} la validité de l’approximation $T = 0$. On admettra que les corrections relativistes nécessaires d’après la question précédente ne modifient pas l’ordre de grandeur de T_F. Quelle est l’origine de la pression due aux électrons ? Estimez son ordre de grandeur.
Partie II. Équilibre de la naine blanche

On s’intéresse à présent à l’équilibre de la naine blanche. Les questions précédentes ont montré que l’on pouvait considérer le milieu comme un mélange de deux gaz non-liés : un gaz d’électrons et un gaz de noyaux. L’énergie cinétique des électrons est suffisamment grande pour que l’on puisse négliger l’énergie cinétique des noyaux et les interactions électrostatiques entre les particules chargées. L’influence des noyaux, négligeable du point de vue cinétique, est toutefois prépondérante quand on s’intéresse aux forces gravitationnelles.

Dans toute la suite, on se place dans l’approximation où la température du système est nulle.

Densité volumique d’énergie

1. Donnez l’expression relativiste de la densité d’énergie cinétique E/V sous la forme d’une intégrale dépendant de la variable $x = p/m_e c$ avec p l’impulsion des électrons de masse m_e et c la vitesse de la lumière. On ne cherchera pas à expliciter cette expression dans le cas général. ▶90

2. Que deviennent ces expressions dans le cas ultra-relativiste, c’est-à-dire pour $x ≫ 1$? On calculera les deux premiers termes dominants du développement limité de E/V en fonction de x^1. ▶91

Rayon d’équilibre de la naine blanche

La pression de gravitation permet de contrecarrer les effets de la pression de dégénérescence des électrons. Dans l’hypothèse d’une répartition homogène de la masse dans la naine blanche, les forces gravitationnelles se manifestent par une énergie $E_G = -3/5 GM^2/R$ où G désigne la constante de gravitation.

1. Comment s’écrit la condition d’équilibre de la naine blanche ? ▶92
2. Déterminez le rayon d’équilibre R_0 en fonction de la masse M dans le cas ultra-relativiste. ▶93
3. Dans le cas non-relativiste et en faisant l’approximation que la masse du neutron et celle du proton sont égales, on admet que l’on aboutit à :

 $$R_0 = \frac{4\hbar^2}{9\pi G m_e} \left(\frac{9\pi}{4 m_p} \right)^{5/3} \frac{1}{M^{1/3}}.$$

Discuter les résultats obtenus. Montrez en particulier l’existence d’une masse limite M_c dans le cas ultra-relativiste. Comparez M_c à la masse du Soleil.

Exercice 3. Gaz de bosons indépendants

Partie I. Propriétés générales

Approche grand canonique

Les propriétés des gaz de particules identiques et indépendantes sont contenues dans l’expression de leur distribution que nous allons calculer dans le cas des bosons : N^B. On note s le spin d’une particule. On considère un ensemble d’états accessibles λ d’énergie ϵ_λ. On note ϵ_0 l’énergie du niveau fondamental N^B. On note ϵ_0 l’énergie du niveau fondamental individuel.

1. Rappeler l’expression du nombre d’occupation $N^B(\epsilon, T, \mu)$ d’un état d’énergie ϵ obtenu dans le cas grand canonique. Rappeler la condition existant entre le potentiel chimique μ et l’énergie ϵ_0. ▶94

1. Dans le cas non-relativiste ($x ≪ 1$), on peut montrer que :

 $$E/V \xrightarrow{x ≪ 1} \frac{k^2}{10\pi^2 m_e} \left(\frac{3\pi^2 N_e}{V} \right)^{5/3}.$$

Les équations d’état obtenues dans le cas non-relativiste et dans le cas ultra-relativiste sont alors $PV = \frac{2}{3} E$ et $PV = \frac{1}{3} E$ respectivement.
2. Comment $N^B(\epsilon, T, \mu)$ évolue-t-il lorsque T varie à μ fixé ?

3. On se place à la limite thermodynamique. En rappeler la signification. Écrire alors sous sa forme intégrale le nombre moyen de particule $N(T, \mu)$ en faisant apparaître la densité d’états individuels $\rho(\epsilon)$ pour un gaz de particules de spin s occupant un volume V fixé. ◀95

4. Comment $N(T, \mu)$ évolue-t-il en fonction de T et μ ? Vous pouvez tracer $N^B(\epsilon, T, \mu)$ respectivement pour deux valeurs de μ et deux valeurs de T.

Interprétation canonique et température de Bose

On va maintenant interpréter l’expression de $N(T, \mu)$ dans le cadre canonique à la limite thermodynamique. N est donc fixé et le potentiel chimique μ peut varier. Le potentiel chimique μ est alors défini par N et T via l’expression $N(T, \mu)$.

1. Comment μ évolue-t-il lorsque N augmente à T fixé ? Pour N fixé et T fixé, existe-t-il toujours une valeur de μ permettant à l’égalité $N(T, \mu)$ d’être respectée ?

2. On se place dans le cas où ϵ_0 est nul. Donner la valeur de la température de Bose T_B pour laquelle l’égalité $N(T, 0)$ est respectée dans le cas limite où le potentiel chimique est nul. Respectivement à T_B, pour quelles températures le caractère quantique des particules se manifestera-t-il ?

Il sera possible de faire apparaître la fugacité $\varphi = e^{\beta \mu}$ et le paramètre $x = \beta \epsilon$, afin d’utiliser l’annexe A sur la fonction de Riemann ζ. ◀96

Remarque : Pour une température $T > T_B$, le potentiel chimique μ est défini de manière unique par le nombre de particules N, la fonction $\epsilon(x) = \int_0^\infty x^{1/2}/(\varphi^2/\varphi - 1)dx$ étant bijective sur $[0, 1]$. Écrire $N(\mu)$ ou $\mu(N)$ est donc équivalent : les approches canonique et grand canonique sont équivalentes.

Partie II. Condensation de Bose-Einstein

On va maintenant considérer que la température du système est inférieure à la température de Bose. Le nombre N de particules est macroscopique et fixé ainsi que le volume. On va considérer un état fondamental non-dégénéré en considérant le cas de bosons de spin s nul. Nous allons montrer que le nombre de particules présentes dans l’état fondamental, et dans ce dernier uniquement, est macroscopique.

Principe

1. Expliquer le problème lié au passage de la forme discrète à la forme intégrale pour le calcul de N.

2. On note N_0 le nombre de particules dans l’état fondamental que l’on considère d’énergie nulle ($\epsilon_0 = 0$). Donner la condition sur le potentiel chimique pour que N_0 soit macroscopique (p.ex. de l’ordre du nombre d’Avogadro).

3. En rappelant l’expression de l’énergie du premier niveau excité ϵ_1 pour une particule libre enfermée dans une boîte quantique, montrer que le nombre d’occupation de tous les états individuels excités reste négligeable devant celui de l’état fondamental.

4. La somme discrète $N(T, \mu)$ peut alors s’écrire comme le nombre d’occupation du niveau fondamental auquel on additionne la forme intégrale pour tous les états excités (nombre d’occupation faible) :

$$N = N_0 + AV \int_0^{\infty} \frac{\epsilon^{1/2}}{e^{\beta \epsilon} - 1} d\epsilon$$

Dans cette expression le potentiel chimique, tellement proche de 0, est considéré nul. En déduire la relation entre N_0, N, T et T_B. Tracer N_0/N en fonction du rapport à T/T_B. ◀97

Le phénomène de condensation est lié à la constance du nombre de particules. Lors d’une variation de température, la valeur du potentiel chimique reste nulle et c’est le nombre de particules N_0 qui s’ajuste. Dans le cas d’un potentiel chimique fixé, une réduction de la température aurait simplement impliqué une diminution du nombre de particules dans le système (qui se vide alors).

Grandeur thermodynamiques

1. Calculer l’énergie et la capacité calorifique en fonction du rapport à T/T_B pour $T < T_B$. Discuter la validité du calcul en $T \to T_B$. On donne l’énergie et la capacité calorifique dans la figure jointe. Commenter. ◀98
2. Calculer le grand potentiel et l’entropie thermodynamique. Discuter l’indépendance de l’entropie envers les \(N_0 \) particules condensées.

3. Montrer que la pression est indépendante du volume \(V \).
Chapitre 8

Chaleur spécifique des solides

Liste des exercices

1. Loi de Dulong & Petit (1819) . 41
2. Modèle d’Einstein (1907) : oscillateurs indépendants 41
3. Modèle de Debye (1912) : oscillateurs couplés 42
 I. Modes propres de vibration de deux oscillateurs couplés 42
 II. Le cristal à une dimension . 42

Exercice 1. Loi de Dulong & Petit (1819)

Retrouver la capacité calorifique par atome C_v pour un cristal à trois dimensions dans le cas des hautes températures (loi de Dulong & Petit). On utilisera l’équipartition de l’énergie en se plaçant dans le cas simple d’un cristal cubique.

Exercice 2. Modèle d’Einstein (1907) : oscillateurs indépendants

Nous nous proposons ici d’analyser les vibrations du réseau cristallin, qui fournissent la contribution dominante à la chaleur spécifique C_v du solide. On observe expérimentalement qu’à haute température, la capacité calorifique obéit à la loi de Dulong & Petit (C_v indépendante de T) alors qu’à basse température (en-dessous d’une dizaine de Kelvin), C_v se comporte en T^3. Bien que n’ayant pas réussi à retrouver la loi en T^3, Einstein a montré à l’aide du modèle simple ci-dessous que la décroissance de la chaleur spécifique à basse température est un phénomène d’origine quantique.

Le modèle d’Einstein suppose que chaque atome du solide vibre autour de sa position d’équilibre de façon indépendante des autres atomes (ce qui revient à négliger les interactions entre particules).

1. Exprimer l’énergie quantifiée de chaque atome, sachant qu’il peut vibrer avec la pulsation ω autour de sa position d’équilibre, dans les trois directions de l’espace.
2. Calculer la fonction de partition canonique Z d’un tel système de N atomes dont la température T est fixée.

Exercice 3. Modèle de Debye (1912) : oscillateurs couplés

Partie I. Modes propres de vibration de deux oscillateurs couplés

Afin de bien comprendre la notion de « mode propre de vibration » ou « mode normal », considérons d’abord un système de deux particules de masse m interagissant via un ressort de raideur K et liées chacune par un ressort de même raideur à un support fixe. On note u_1 et u_2 le déplacement des particules par rapport à leur position d’équilibre.

1. Montrer que les équations (classiques) du mouvement de ces deux particules peuvent s’écrire sous la forme de deux équations décrivant des oscillateurs harmoniques indépendants :

$$\ddot{X} = -\omega_1^2 X, $$
$$\ddot{Y} = -\omega_2^2 Y, $$

où $X = u_1 + u_2$ et $Y = u_1 - u_2$ sont appelés *modes propres* du système.

2. Considérant maintenant les modes propres X et Y comme des oscillateurs quantiques indépendants de pulsations ω_1 et ω_2, donner l’expression de la capacité calorifique C_v en utilisant les résultats de l’exercice 2. Tracer C_v en fonction de la température T.

Partie II. Le cristal à une dimension

On considère désormais une chaîne bouclée constituée de N atomes connectés les uns aux autres par des ressorts de raideur K. La séparation entre les atomes au repos est d. On note $x_n = nd+u_n$ la position de l’atome n.

1. Montrer que les équations du mouvement s’écrivent :

$$m\ddot{u}_n = -K(2u_n - u_{n+1} - u_{n-1}).$$

2. On décompose alors le mouvement des atomes de la chaîne en une superposition d’ondes progressives de vecteur d’onde q (positif ou négatif) et de pulsation ω (positive). Pour chacune de ces ondes, le déplacement de l’atome n s’écrit :

$$u_n = \tilde{u}_q e^{i(qnd-\omega t)}. $$

Vérifier que cette expression est solution des équations du mouvement à condition que ω et q vérifient la relation de dispersion :

$$\omega(q) = 2\omega_0 |\sin(qd/2)|. $$

3. On rappelle que, comme la chaîne est bouclée, les conditions au bord sont périodiques : $u_{N+1} = u_1$. En déduire les valeurs admissibles du vecteur d’onde q.

4. Montrer que les modes $\xi_q(t) = \sum_{n=1}^{N} u_n(t) e^{-iqnd}$ constituent les *modes propres* de vibration du système, c’est-à-dire qu’ils suivent l’équation du mouvement d’un oscillateur harmonique indépendant :

$$\frac{d^2}{dt^2} \xi_q(t) = -\omega(q)^2 \xi_q(t).$$

Comparer $\xi_q(t)$ à \tilde{u}_q. Montrer qu’il y a N modes propres indépendants et que la longueur d’onde minimale est égale à $2d$.

5. Tracer la courbe de dispersion $\omega(q)$ en fonction de q et exprimer la densité d’états $g(\omega)$. Quelle est la fréquence maximale $f_{max} = \omega_{max}/2\pi$?

6. Par analogie avec la question 1., donner l’expression de la capacité calorifique C_v de ce système de N atomes. Montrer que dans la limite $T \to 0$, seuls les modes de basse fréquence contribuent à la capacité calorifique.
7. Lorsque N est grand, le système ressemble à un milieu continu, le « jellium ». Donner l’expression de la nouvelle densité d’états $g(\omega)$ pour le jellium, obtenue en remplaçant la véritable relation de dispersion par une dispersion linéaire. En déduire la nouvelle fréquence maximale $f_D = \omega_D / 2\pi$ (fréquence de Debye) et la comparer à f_{max}.

8. Dans l’approximation ci-dessus, montrer que C_v s’écrit :

$$ C_v = \frac{N k_B}{x_D} \int_0^{x_D} \frac{x^2 e^x}{(e^x - 1)^2} \, dx \quad \text{avec} \quad x_D = \frac{\hbar \omega_D}{k_B T}. $$

Calculer C_v dans des limites haute et basse températures que l’on définira. Commenter. 109

Remarque : il est intéressant de généraliser le calcul à un cristal en dimension $D > 1$.

109 Remarque : il est intéressant de généraliser le calcul à un cristal en dimension $D > 1$.

C_v dans des limites haute et basse températures que l’on définira. Commenter. 109

Remarque : il est intéressant de généraliser le calcul à un cristal en dimension $D > 1$.

C_v dans des limites haute et basse températures que l’on définira. Commenter.
Annexe A

Formulaire

Liste des exercices

- Rappels sur la formule de Stirling ... 44
- Intégrales gaussiennes .. 44
- Volume d’une hyperboule ... 45
- Propriétés de la fonction Γ ... 45
- Formule de sommation d’Euler-Mac Laurin 45
- Fonction de Riemann ζ .. 45
- Quelques intégrales ζ ... 46

La plupart des propriétés des fonctions mathématiques que nous utiliserons sont décrites dans des ouvrages de références, tel que la ref. [10]. Nous en rappelons quelques unes dans cette annexe.

Rappels sur la formule de Stirling

\[n! = n^n e^{-n} \sqrt{2\pi n} e^{\varepsilon_n} \]
\[\varepsilon_n = \frac{B_1}{2} \frac{B_2}{3\cdot 4n} + \frac{B_3}{5\cdot 6n^2} - \frac{B_4}{7\cdot 8n^3} + \ldots \]

avec pour les nombres de Bernoulli :

\[B_1 = 2 \frac{1}{2n-1\pi^2} \sum_{p=1}^{\infty} \frac{1}{p^{2i}}, \quad B_1 = \frac{1}{6}, \quad B_2 = \frac{1}{30}, \ldots \]

Dans la pratique

\[n! \sim n^n e^{-n} \sqrt{2\pi n} \]
donne un résultat à mieux que 1% près dès que \(n \geq 10 \) et on emploie le plus souvent pour \(n \) grand :

\[\ln n! \simeq n \ln n - n. \]

Intégrales gaussiennes

Intégration de la fonction gaussienne \((b > 0)\) :

\[\int_{-\infty}^{+\infty} e^{-bx^2} \, dx = \sqrt{\frac{\pi}{b}} \]

On pose pour \(n \in \mathbb{N} \) :

\[I_n = \int_0^{+\infty} x^n e^{-bx^2} \, dx \]
En utilisant l’intégration par partie, on obtient :

\[I_{n+2} = \frac{n+1}{2b} I_n, \quad \text{avec} \quad I_0 = \frac{1}{2} \sqrt{\frac{\pi}{b}} \quad \text{et} \quad I_1 = \frac{1}{2b} \]

Par récurrence, on obtient donc :

Pour \(q \in \mathbb{N}^* \), \(\int_0^{+\infty} v^{2q} \exp(-bv^2) \, dv = \frac{(2q-1)!}{(q-1)!} \frac{\sqrt{\pi}}{2^{2q} b^{q+\frac{1}{2}}} \)

et

Pour \(q \in \mathbb{N} \), \(\int_0^{+\infty} v^{2q+1} \exp(-bv^2) \, dv = \frac{q!}{2 b^{q+1}} \)

Volume d’une hyperboule

Le volume \(V_N \) d’une boule de rayon \(R \) dans un espace de dimension \(N \) vaut :

\[V_N(R) = \frac{\pi^{N/2}}{\Gamma(N/2 + 1)} R^N \]

où la fonction \(\Gamma \) est définie par :

\[\Gamma \triangleq \int_0^{+\infty} e^{-t} t^{x-1} \, dt. \]

On a \(\Gamma(1/2) = \sqrt{\pi} \), \(\Gamma(1) = 1 \), \(\Gamma(x+1) = x\Gamma(x) \), et donc \(\Gamma(n+1) = n! \) pour \(n \) entier.

Propriétés de la fonction \(\Gamma \)

\[\Gamma(1) = 1, \]

\[\Gamma(1/2) = \sqrt{\pi}, \]

\[\Gamma(x+1) = x\Gamma(x), \]

Pour \(x \to +\infty \), \(\Gamma(x+1) = x^ne^{-x} \sqrt{2\pi x} \left(1 + O\left(\frac{1}{x}\right)\right) \).

Conséquence : pour \(N \in \mathbb{N} \),

\[\Gamma(N) = (N - 1)!, \]

\[N! \sim N^N e^{-N} \sqrt{2\pi N}, \]

\[\ln(N!) \simeq N \ln N - N. \]

Formule de sommation d’Euler-Mac Laurin

\[\sum_{n=0}^{\infty} f(n) = \int_0^{+\infty} f(u) \, du + \frac{1}{2} f(0) - \frac{1}{12} f'(0) + \frac{1}{720} f^{(3)}(0) - \frac{1}{30240} f^{(5)}(0) \ldots \]

Fonction de Riemann \(\zeta \)

La fonction de Riemann \(\zeta \) est définie par :

\[\int_0^{+\infty} \frac{x^y}{e^x - 1} \, dx = \Gamma(y+1) \zeta(y+1) \quad \text{avec} \quad \Gamma(y) = \int_0^{+\infty} x^{y-1} e^{-x} \, dx \]

On a de plus :

\[\int_0^{+\infty} \frac{x^{1/2}}{e^x - 1} \, dx = \Gamma\left(\frac{3}{2}\right) \zeta\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2} \times 2.612, \]

\[\int_0^{+\infty} \frac{x^{3/2}}{e^x - 1} \, dx = \Gamma\left(\frac{5}{2}\right) \zeta\left(\frac{5}{2}\right) = \frac{3\sqrt{\pi}}{4} \times 1.341 \]
Quelques intégrales

\[
\int_0^\infty \frac{x}{e^x + 1} \, dx = \frac{1}{12} \pi^2
\]

\[
\int_0^\infty \frac{x^3}{e^x + 1} \, dx = \frac{7}{120} \pi^4
\]

\[
\int_0^\infty \frac{x e^x}{(e^x - 1)^2} \, dx = \frac{1}{3} \pi^2
\]
Annexe B

Solutions

1. \(P(n, N) = C_N^n p^n (1-p)^{N-n} \)

2. \(\pi = Np \)

3. \((\Delta n)^2 = Np(1-p) \)

4. \(n^* = \pi \)

5. \(P(n, N) = \exp(-\pi) \frac{\pi^n}{n!} \) (Distribution de Poisson)

6. \(\left(P + \frac{n^2 a}{V^2} \right) (V - nb) = nRT \)

7. \(b_1 = b - \frac{a}{RT} \)

8. \(T_c = \frac{8a}{27Rb}, \quad P_c = \frac{a}{27b^2}, \quad V_c = 3nb \)

9. \((\pi + 3/\nu^2)(3\nu - 1) = 8\theta \)

10. Une équation d’état contenant trois paramètres (a, b et R ici) mène à la loi des états correspondants (voir ref. [2])

11. \(f(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T} \right)^{3/2} \exp \left(-\frac{mv^2}{2k_B T} \right) \)

12. \(P = P_0 e^{-t/\tau} \) avec \(\tau = \frac{4V}{Sv} \) et \(v = 2\sqrt{\frac{2k_B T}{\pi m}} \)

13. \(\kappa_{GP} = \frac{1}{2\sigma} \sqrt{\frac{3k_B T}{m}} \) avec \(\sigma \) section efficace

14. \(\eta_{GP} = \frac{1}{\sigma} \sqrt{\frac{kTm}{3}} \) avec \(\sigma \) section efficace
\[(m_A + m_B)V_G = m_A V_A + m_B V_B,\]
\[\mu_{AB} = \frac{m_A m_B}{m_A + m_B},\]
\[E_{cin} = \frac{1}{2} m_A V_A^2 + \frac{1}{2} m_B V_B^2 = \frac{1}{2} (m_A + m_B) V_G^2 + \frac{1}{2} \mu_{AB} V_{rel}^2.\]

\[
f(V_{rel})d^3V_{rel} = \int_{V_G} f(V_A)f(V_B)d^3V_A d^3V_B
= \int_{V_G} \left(\frac{m_A m_B}{(2\pi k_B T)^3}\right)^{3/2} \exp\left(-\frac{E_G + E_{rel}}{k_B T}\right) d^3V_G d^3V_{rel}
= \left(\frac{\mu_{AB}}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{\mu_{AB} V_{rel}^2}{2k_B T}\right) d^3V_{rel}
\]

\[E_{utile} = \frac{1}{2} \mu_{AB} (V_{rel} \cos(\theta))^2 = E_{rel} \left(1 - \frac{b^2}{d_{AB}^2}\right) \geq E_R\]

\[\text{donc } \frac{b^2}{d_{AB}^2} \leq 1 - \frac{E_R}{E_{rel}}\]

\[\text{qui implique } \begin{cases} E_{rel} \leq E_R, \quad \sigma_r = 0, \\ E_{rel} \geq E_R, \quad \sigma_r = 1 - \frac{E_R}{E_{rel}} \end{cases}\]

\[n_B V_{rel} \sigma_r(V_{rel})\]

\[\text{qu'il faut multiplier par la densité de probabilité d'avoir une vitesse relative donnée.}\]

\[k^+ n_B = n_B \int_{V_{rel}^2 \geq 2E_R/\mu_{AB}} V_{rel} \sigma_r(V_{rel}) f(V_{rel}) d^3V_{rel} = n_B \sigma_{AB} \sqrt{\frac{8k_B T}{\pi \mu_{AB}}} \exp\left(-\frac{E_R}{k_B T}\right)\]

\[v^+ = n_A k^+ n_B = n_A n_B \sigma_{AB} \sqrt{\frac{8k_B T}{\pi \mu_{AB}}} \exp\left(-\frac{E_R}{k_B T}\right)\]

Qui est proportionnel à la moyenne de la norme de la vitesse relative \(\langle |V_{rel}| \rangle\).

\[\text{On retrouve la structure de la loi. On explique la dépendance en } \sqrt{T} \text{ qui peut apparaître dans la constante des vitesses. Mais il manque des facteurs, tel que le facteur stérique.}\]

\[n_{ANB}/n_{CD} = \sigma_{CD}/\sigma_{AB} \sqrt{\mu_{AB}/\mu_{CD}} \exp\left(-\frac{\Delta E}{k_B T}\right)\]

\[\text{Une collision sur deux est bien orientée.}\]

\[P(M \wedge +) = P(M) P(+) | M) = P(+) P(M | +)\]

\[P(S \wedge +) = P(S) P(+ | S) = P(+) P(S | +)\]

\[P(M | +) = \left\{ 1 + \frac{[1 - P(M)][1 - P(-|S)]}{P(M)P(+|M)} \right\}^{-1} = 24\%\]
\[P_1 = (4 \times 2^{2/3} + 3)^{-1} = 10.7\% \\
\] \[P_2 = (4 + 3 \times 2^{-2/3})^{-1} = 17\% \\
\] \[P_6 = (4 \times 2^{-1/3} + 3/2)^{-1} = 21.4\% \\
\]

\[S = 3/2 \]

\[S_{\text{max}} = 1 \]

\[\ell_{\text{min}} = 3/2 \]

\[S = \frac{-1}{\ln 2} \left(\frac{1}{30} \ln \frac{1}{30} + \frac{29}{30} \ln \frac{29}{30} \right) = 0.21 \]

\[\langle x \rangle = 0, \quad \langle x^2 \rangle = x_0^2/2 \]

\[S = N k_B \left(\ln \frac{E}{\hbar \omega} - \ln N + 1 \right), \quad E = N k_B T \]

\[n_+ + n_- = n, \quad n_+ - n_- = L/a \]

\[S/k_B = \ln n! - \ln n_+! - \ln n_-! \]

\[F/T = \frac{k_B L}{N} \]

\[Z_K = \lambda_D^{-N} \quad \text{avec} \quad \lambda_D = \hbar (2\pi m k_B T)^{-1/2} \]

\[F = (N/\beta) \left[\ln \frac{N \lambda_D}{L - N \ell} \right], \quad P(L - N \ell) = N k_B T \]

\[E = N k_B T/2, \quad C_L = N k_B / 2 \]

\[\mu = k_B T \left[\ln \frac{N \lambda_D}{L - N \ell} + \frac{N \ell}{L - N \ell} \right] > \mu_{\text{GP}} = k_B T \ln \frac{N \lambda_D}{L} \]

\[\Phi = \frac{1}{N! h^N} (L - N \ell)^N \left(\frac{2\pi m E_0}{N/2 + 1} \right)^{N/2} \]

\[T^* = 2 E_0 / (k_B N), \quad P^*(L - N \ell) = N k_B T^* \]

\[Z = (2 \cosh \alpha)^N \quad \text{avec} \quad \alpha = \frac{\mu B}{k_B T} \]

\[E = -N \mu B \tanh \alpha \]

\[C = N k_B \left(\frac{\alpha}{\cosh \alpha} \right)^2 \]
\[
M = \mu \tanh \alpha, \quad \chi = \frac{\mu}{B \cosh^2 \alpha}
\]

\[
(\Delta M)^2 = \frac{\mu^2}{N \cosh^2 \alpha} = \chi/(N\beta)
\]

\[
\chi_0 = \frac{\mu^2}{k_B T} \quad \text{(loi de Curie)}
\]

\[
S = n k_B [\alpha \tanh \alpha + \ln(2 \cosh \alpha)]
\]

\[
f(\beta) = \begin{cases}
-\epsilon_1 & \text{pour } T < T_0 = (\epsilon_1 - \epsilon_2)/(k_B \ln 2) \\
- (\epsilon_2 + k_B T \ln 2) & \text{pour } T > T_0
\end{cases}
\]

\[
e(\beta) = \begin{cases}
-\epsilon_1 & \text{pour } T < T_0 \\
-\epsilon_2 & \text{pour } T > T_0
\end{cases}
\]

\[
s(\beta) = \begin{cases}
0 & \text{pour } T < T_0 \\
k_B \ln 2 & \text{pour } T > T_0
\end{cases}
\]

\[
\Delta f = 0, \quad \Delta e = \epsilon_1 - \epsilon_2 > 0, \quad \Delta s = k_B \ln 2 = \Delta e/T_0
\]

\[
1/T^* = (k/\epsilon) \left[\ln \left(\frac{N - n}{n} \right) + \ln \left(\frac{N' - n}{n} \right) \right],
\]

\[
n^* = \frac{-(N + N') + \sqrt{\Delta}}{2(e^{\beta\epsilon} - 1)} \quad \text{avec } \Delta = (N + N')^2 + 4(e^{\beta\epsilon} - 1)NN' > 0
\]

\[
n/N = 1/(e^{\beta\epsilon}/2 + 1)
\]

\[
\ln Z = \ln \left(\sum_{n=0}^{N} C_N^n C_N^{n^*} e^{-\beta n\epsilon} \right) \simeq \ln \left(C_N^n C_N^{n^*} e^{-\beta n^*\epsilon} \right)
\]

\[
F = -k_B T \ln g_{n^*} + n^* \epsilon \quad \text{avec } \ln g_{n^*} = 2N \left[x/(e^x + 1) + \ln(1 + e^{-x}) \right], \quad n^* = N/(e^x + 1), \quad \text{et } x = \beta\epsilon/2
\]

\[
E = n\epsilon
\]

\[
S = k_B \ln g_{n^*}
\]

\[
C_D/(Nk_B) = 2 \frac{x^2e^x}{(1 + e^x)^2}
\]

\[
z_{\text{trans}} = V/\lambda_D^3 \quad \lambda_D = \sqrt{2\pi\beta\hbar^2/m}
\]

\[
z_{\text{vib}} = (2 \sinh(\beta\hbar\omega/2))^{-1}
\]

\[
z_{\text{rot}} = \sum_{j=0}^{\infty} (2j + 1)e^{-x(j+1)}
\]

\[
c_{\text{rot}} = k_B x^2 \frac{\partial^2 \ln z_{\text{rot}}}{\partial x^2} = k_B (1 + x^2/45 + o(x^2))
\]
\(c_{v,\text{rot}} = 12Nk_Bx^2(e^{-2x} - 6e^{-4x} + o(e^{-4x}))\)

\(z_{\text{rot}}^C = 1/x\)

\(z_{\nu} = (2I_A + 1)(2I_B + 1)\)

\(z_p = i(2i + 1) \sum_{j \text{ pair}} (2j + 1)e^{-xj(j+1)}\), \(z_o = (i + 1)(2i + 1) \sum_{j \text{ impair}} (2j + 1)e^{-xj(j+1)}\)

\(z_{\text{rot}}^{AA} = z_{\text{rot}}^{-} = \frac{2}{x} [1 + x/3 + x^2/15 + o(x^2)]\)

\(c_{\text{rot-nucl}} = \frac{Nk_B}{x \ll 1}\)

\(c_{\text{rot-nucl}} = 36Nk_Bx^2e^{-2x}\)

\(r = z_p/z_o = \begin{cases} 3 & \text{pour } x \ll 1 \\ 9e^{-2x}(1 - 5e^{-6x}) & \text{pour } x \gg 1 \end{cases}\)

\(z_{D_2}^{\text{rot-nucl}} = \frac{9}{4} z_{H_2}^{\text{rot-nucl}}\)

\[
\begin{array}{cccc}
T (K) & 1000 & 2000 & 3000 & 4000 \\
\log K_p & -19.24 & -6.16 & -1.75 & 0.46 \\
\end{array}
\]

\(Z_g = \frac{1}{N_g} (V/\lambda_D^3)^{N_g} \text{ avec } \lambda_D = \hbar \sqrt{\beta/(2\pi m)}\)

\(F_g = -N_g/\beta [1 + \ln(V/N_g) - 3\ln \lambda_D]\)

\(P_g = N_gk_BT/V\)

\(S_g = N_gk_B [5/2 + \ln(V/N_g) - 3\ln \lambda_D]\)

\(Z_s = e^{-\beta N_s} \epsilon_0^{-\delta} N_s \text{ avec } \delta = 2 \sinh(\beta \hbar \omega/2)\)

\(Z_{g+s} = \sum_{N_g=0}^{N} Z_g(N_g)Z_s(N - N_g)\)

\(\mathcal{P}(N_{g0}) = Z_g(N_{g0})Z_s(N - N_{g0})/Z_{g+s}\)

\(\tilde{N}_g = V e^{-\beta \epsilon_0}(\delta/\lambda_D)^3\)

\(V_{\text{max}} = N e^{\beta \epsilon_0}(\lambda_D/\delta)^3\)

\(PV = \tilde{N}_g k_B T\)
\[
P_{\text{sat}} = \frac{e^{-\beta \epsilon_0}}{\beta} (\delta/\lambda D)^3
\]
\[
\Xi = \exp \left(e^{\beta \epsilon_0/\lambda D^2} \right)
\]
À l'équilibre, \(\mu = \mu' \)
\[
\xi = 1 + e^{\beta (\epsilon_1 + \mu)}
\]
\[
\Xi = \xi^M
\]
\[
\tau = 1/\xi
\]
\[
\tau = \left(1 + \frac{P_0}{P} e^{-\beta (\epsilon_1 + \mu_0)} \right)^{-1}
\]
\[
\Xi = \xi^M \quad \text{avec} \quad \xi = 1 + \frac{e^{\beta (\epsilon_1 - \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\tau = \left(1 + \frac{P_0}{P} e^{-\beta (\epsilon_1 + \mu_0)} \right)^{-1}
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
\[
\epsilon_F = \left(\frac{3N}{2\alpha} \right)^{2/3} \quad \text{avec} \quad \alpha = \frac{V}{\pi^2} \left(\frac{2m^{3/2}}{\hbar^3} \right)
\]
\[
\xi = 1 + \frac{e^{\beta (\epsilon_1 + \epsilon_2)}}{e^{-\beta (\epsilon_2 + \mu)} - 1} \quad \text{pour} \quad \epsilon_2 + \mu < 0
\]
avec

\[M_c = \left(\frac{5\hbar c}{9\pi G} \right)^{3/2} \left(\frac{9\pi}{8m_p} \right)^2 \] et \[R_c = \frac{\hbar}{m_e c} \left(\frac{9\pi}{8m_p} \right)^{1/3} M_c^{1/3} \]

\[N^B = \frac{1}{e^{\beta (\epsilon - \mu)} - 1} \text{ pour } \mu < \epsilon_0 \]

\[N = \sum_{\lambda} N^B_{\lambda} \sim \int_{\epsilon_0}^{\infty} d\epsilon \rho(\epsilon) N^B(\epsilon) \]

\[T_B = 2\pi \hbar^2 k_B m \left(\frac{N}{V} \frac{1}{2s + 1} \frac{1}{2,612} \right)^{2/3} \]

\[N_0 = N \left[1 - (T/T_B)^{3/2} \right] \]

\[E = \frac{3}{T < T_B} 7,701 N k_B T (T/T_B)^{3/2} \]

\[J = -\frac{2}{3} E, \quad S = \frac{5}{3} E \]

\[Puits de potentiel = Trois oscillateurs harmoniques indépendants, soit \]

\[C_v = 3 \times 2 \times \frac{k_B}{2} \]

\[\epsilon_{n_x,n_y,n_z} = [(n_x + 1/2) + (n_y + 1/2) + (n_z + 1/2)] \hbar \omega \]

\[Z = (2 \sinh(\beta \hbar \omega / 2))^{-3N} \]

\[C_V = 3 N k (T_e/2T)^2 \sinh^{-2}(T_e/2T), \quad \text{avec} \quad k_B T_e \equiv \hbar \omega \]

\[\omega_1^2 = k/m, \quad \omega_2^2 = 3k/m \]

\[C_V = k_B \left[(T_1/2T)^2 \sinh^{-2}(T_1/2T) + (T_2/2T)^2 \sinh^{-2}(T_2/2T) \right] \]

\[q = \frac{2\pi k}{Nd} \text{ avec } k \in Z \]

\[g(\omega) = \frac{2N}{\pi \sqrt{4\omega_0^2 - \omega^2}}, \quad f_{\text{max}} = \omega_0/\pi \]

\[C_V = k_B \sum_q (T_q/2T)^2 \sinh^{-2}(T_q/2T) \]

\[C_V \simeq \frac{\pi^2}{3} N k_B \left(\frac{T}{T_D} \right) \propto T \text{ pour } T \ll T_D \equiv \hbar \omega_D / k_B \]
Bibliographie

 http://philsci-archive.pitt.edu/2691/
[7] Patrick Ayotte, Chimie Physique II
 http://pages.usherbrooke.ca/payotte/cph407.html
[10] Outils mathématiques :
 http://www.math.sfu.ca/~cbm/aands/
[11] Valeurs des constantes :
[12] Un site regroupant des liens vers des sites scientifiques (Encyclopédies, constantes, nomenclatures, biographies, histoire...).
 http://urfist.univ-lyon1.fr/
 http://wwwens.uqac.ca/chimie/Cinetique_chimique/