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Abstract

Mixed atomistic and continuum methods o}er the possibility of carrying out simulations of
material properties at both larger length scales and longer times than direct atomistic calcu!
lations[ The quasicontinuum method links atomistic and continuum models through the device
of the _nite element method which permits a reduction of the full set of atomistic degrees of
freedom[ The present paper gives a full description of the quasicontinuum method\ with special
reference to the ways in which the method may be used to model crystals with more than a
single grain[ The formulation is validated in terms of a series of calculations on grain boundary
structure and energetics[ The method is then illustrated in terms of the motion of a stepped
twin boundary where a critical stress for the boundary motion is calculated and nanoindentation
into a solid containing a subsurface grain boundary to study the interaction of dislocations
with grain boundaries[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] A[ Dislocations^ A[ Grain boundaries^ B[ Constitutive behaviour^ C[ Finite elements

0[ Introduction

A longstanding ambition in the modeling of materials has been that of rationalizing
and predicting the observed mechanical properties of materials on the basis of an
understanding of their constituent defects[ The advent of ever more powerful com!
puters has ushered in the possibility of carrying out rudimentary calculations of this
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type directly on the basis of full atomistic simulations[ However\ an alternative class
of models has sought to exploit atomistic insights without abandoning altogether the
powerful resources that are associated with continuum theories[ One such approach
is the quasicontinuum method "Tadmor et al[\ 0885# which links the kinematic con!
straints\ and attendant degree of freedom reduction o}ered by the _nite element
method\ to total energies predicated entirely on atomistic analysis[

The push to develop models of defect interactions has come from experimental
observations on ever!smaller length scales[ Recent micromechanical observations
routinely explore problems in which small numbers of defects are responsible for the
mechanical properties of interest "see\ for example\ Gerberich et al[\ 0885#[ The
experimental advent of nanomechanics as ushered in by a host of high resolution
microscopies such as high!resolution TEM and atomic scale resolution surface probes
such as the STM and the AFM has led to theoretical demands as well[ One of the
theoretical responses to this challenge has been the attempt to build simulation tools
that allow for the analysis of multiple length scales simultaneously[ Before turning to
the quasicontinuum method itself\ we mention two examples that are antecedents to
the approach advocated here[

The broad class of models known as cohesive zone models have as their aim the
incorporation of constitutive nonlinearity to account either for the {{core|| material
at a crack tip "Barenblatt\ 0851# or at a dislocation core "Peierls\ 0839#[ One of the
signi_cant outcomes of these calculations\ that is especially noteworthy for the present
purpose\ is the fact that the incorporation of the constitutive nonlinearity introduced
by the cohesive zone eliminates "or at least ameliorates# the singularities that are
inherited from an analysis predicated purely on the basis of linear elasticity[ A recent
advance in cohesive zone technology has been the exploitation of cohesive zone elastic
potentials calculated using density functional calculations "Xu et al[\ 0884#\ in the
study of dislocation nucleation near a crack tip[ As will be more evident below\ the
quasicontinuum method takes its cue from the cohesive zone approach in that it is
the constitutive nonlinearity\ especially as dictated by an underlying atomistic analy!
sis\ that gives this approach its power[

An alternative class of models that is built around the same insights as those
associated with cohesive zone approaches are those that e}ect a linkage between two
di}erent spatial regions\ one of which explicitly treats each and every atomic degree
of freedom with its requisite nonlinearity and a second of which is treated either by
traditional linear elasticity or its discrete analog "Kohlho} et al[\ 0880 ^ Thomson et
al[\ 0881#[ Such methods necessitate the management of boundary conditions that
permit the matching of the two regions[ However the logic that stands behind such
methods is nearly identical to that advocated here[ The assertion is that in the
immediate vicinity of the defect\ it is essential to have a su.cient level of resolution\
so as to capture the sometimes complex local atomic rearrangements that characterize
them[ On the other hand\ the contention is that\ far away from the defect\ there is no
reason to doubt the e.cacy of continuum mechanics[ In their present incarnations\
these mixed methods have the di.culty that each problem must be treated on a case
by case basis with the boundary between the fully atomistic region and the rest of
space designed a priori[ The quasicontinuum method to be described below is founded
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on the basis of adaptive strategies in which\ in the course of the calculation\ the region
of full atomistic resolution can vary in response to the evolution of both loading and
defects[

The present paper is written with two clear objectives[ First\ it is our aim to
generalize the earlier statements of the quasicontinuum method so as to allow for the
treatment of problems involving more than one grain[ It is well known that a range of
phenomenology in the mechanics of materials including HallÐPetch type phenomena\
grain boundary sliding and NabarroÐHerring creep\ trace their existence to the pres!
ence of grain boundaries[ The formulation as described in an earlier paper "Tadmor
et al[\ 0885# was noncommittal with respect to the question of how one might incor!
porate grain boundaries as a synthetic element of the material|s microstructure and
it is a key aim of the present work to remove that ambiguity[

The second objective of the present paper is to provide the logical foundation for
the generalization of the method to a number of di}erent contexts[ Work to extend
further the quasicontinuum method is presently in progress in a number of di}erent
areas\ all of which rest upon the foundations laid here[ One of the key extensions is
to make the method fully three dimensional\ which allows for the realistic simulation
of phenomena such as dislocation junction formation\ and dislocation nucleation[ An
additional area of development concerns the need to explicitly evaluate the dynamical
trajectories undertaken in a given process at _nite temperature[ In particular\ we see
the quasicontinuum method as a possible meeting point for molecular dynamics and
continuum thermodynamics[ Finally\ to allow for the treatment of alloys and even
elemental materials such as silicon\ the method has required generalization to situ!
ations in which the crystallography is characterized by the presence of more than one
atom per unit cell[ Although these topics will not be described in the present paper
explicitly\ preliminary e}orts have been forged in all of these directions\ all of which
have been built around the ideas that are set forth here[

The organization of the remainder of the paper is as follows[ Section 1 presents an
overview of the quasicontinuum method[ The detailed description of the individual
components of the methodology may be found in Section 2[ This is followed in Section
3 by discussion of validation of the method\ with full atomistic calculations serving
as the benchmark for success with particular reference to the use of quasicontinuum
calculations for the study of grain boundary structure and energetics[ Sections 4 and
5 complete the description with applications that exploit the capacity of the method
to examine deformation problems involving more than a single grain[

1[ Overview

In this section\ we undertake a description of the quasicontinuum method\ with
special attention drawn to the subtleties that attended the generalization to problems
involving more than one grain[ As discussed in the introduction\ one of the fun!
damental precepts around which the quasicontinuum method was built was the
idea that direct atomistic simulation has both strengths and weaknesses[ The clear
advantage of the atomistic perspective is that such calculations are capable of pro!
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viding the requisite resolution to account for the highly nonlinear and sometimes
counterintuitive atomic arrangements that are found in the defect core[ Indeed\ it has
been found that in some circumstances such atomic level details are the source of
known macroscopic anomalies in the material|s behavior[ For example\ Christian
"0872# has discussed the e}ect of the dislocation core structure on the anomalous
plastic behavior in bcc metals[ On the other hand\ the weakness of the atomistic
approach is the huge number of redundant degrees of freedom away from such
defects[ The quasicontinuum method attempts to incorporate both of these insights
by allowing for full atomic scale resolution near defect cores while exploiting a coarser
description further away[

We begin with an overview of the conceptual elements of the quasicontinuum
method as described in Tadmor et al[ "0885#[ The key idea is that of kinematic slavery
in which by virtue of the _nite element method "FEM#\ the positions of the majority
of atoms are entirely constrained and determined only by the displacements of the
nodes tied to the element of which they are a part[ Once the geometric disposition of
the body is established\ the problem becomes one of determining the total energy[
From a traditional continuum mechanics viewpoint\ such as that o}ered by the
linear theory of elasticity\ the total energy may be computed on the basis of a
phenomenological constitutive law such as Hooke|s law[ The aim in Tadmor et al[
"0885#\ by way of contrast\ has been to use atomistic calculations to inform the
energetic statement of the continuum mechanics variational principle[ This step o}ers
the constitutive nonlinearity alluded to above\ and allows naturally for the emergence
of lattice defects such as dislocations[

We now give a formal description of the formulation of the quasicontinuum method
generalized to account for the presence of multiple grains\ restricting attention to
those problems in which the undeformed state of the body is polycrystalline[ We take
the view that the body whose disposition is of interest should be thought of as a
collection of a possibly huge number\ N\ of atoms[ In Fig[ 0\ we show the body which
is imagined to be built up of a variety of di}erent grains with Bravais lattice vectors
schematically indicated[ The presence of a crystalline reference con_guration is
exploited in the sense that for many regions of the crystal\ it is unnecessary to save
lists of atomic positions since they can be generated as needed by exploiting the
crystalline reference state[ A given atom in the reference con_guration is speci_ed by
a triplet of integers l�"l0\ l1\ l2#\ and the grain to which it belongs[ The position of
the atom in the reference con_guration is then given as

X"l# � s
2

a�0

laB
m
a¦Rm "0#

where Bm
a is the ath Bravais lattice vector associated with grain Gm and Rm is the

position of a reference atom in grain Gm which serves as the origin for the atoms in
grain Gm[

Once the atomic positions have been given\ from the standpoint of a strictly
atomistic perspective\ the total energy is given by the function

Etot �Eexact "x0\x1\x2\ [ [ [ \xN# �Eexact ""xi##\ "1#
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Fig[ 0[ Illustration of a crystalline solid made up of grains Gm with a reference atom in each grain and an
associated set of Bravais lattice vectors[

where xi is the deformed position of atom i[ We adopt the convention that capital
letters refer to the undeformed con_guration while lower case letters refer to the
deformed con_guration[ The energy function in eqn "1# depends explicitly upon each
and every microscopic degree of freedom\ and as it stands become intractable once
the number of atoms exceeds one|s current computational capacity[ The problem of
determining the minimum of the potential energy is in the context noted above nothing
more than a statement of conventional lattice statics[ We will now proceed to construct
the formulation of the method in a step!by!step fashion[ We begin with the intro!
duction of kinematic constraints which have the e}ect of reducing the number of
degrees of freedom being accounted for by selecting a small subset of R atoms from
the total set of N atoms[ These atoms serve as {{representative atoms||\ and remain
the only unconstrained degrees of freedom in the problem[ A _nite element mesh with
nodes corresponding to the positions of the representative atoms is then de_ned[ By
virtue of _nite element interpolation we may compute the total energy from the
equation given above\ but now with a substantial fraction of the atoms participating
geometrically as nothing more than drones\ since their positions are entirely deter!
mined by the displacements of the adjacent nodes[ Quantitatively\ if a is an index over
the representative atoms\ then the interpolated position xint

i of any other atom i may
be obtained by

xint
i �s

a

Na"Xi#xa\ "2#
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where Na"Xi# is the _nite element shape function centered around the representative
atom a "which is also a FEM node# evaluated at the undeformed position Xi of atom
i[ In particular\ we may write the total energy as

Etot �Eexact "xint
0 \xint

1 \ [ [ [ \xint
N # �Eexact ""xint

i ##[ "3#

At this stage not much has been gained since the computation of the total energy
is still predicated upon a knowledge of all of the atomic positions\ though now many
of the atomic positions are constrained[ We now make the additional assumption that
the energy may be written in a form that is additively decomposed\ such that

Etot � s
N

i�0

Ei\ "4#

which presupposes the existence of well!de_ned site energies Ei\ and is typical in many
current atomistic formulations such as the embedded!atom method "EAM#[ The
summation runs over all atoms in the solid[ Because of this\ the sum written above
remains intractable in the sense that if we interest ourselves in computing the total
energy\ we are still obliged to visit each and every atom[ The spirit of the problem
that we are faced with is now identical to that of numerical quadrature\ and what we
require at this point is a scheme for approximating the sum given above by summing
only over the representative atoms with appropriate weights selected so as to account
for di}erences in element size and environment[ In particular\ we desire

Etot ¼ s
R

a�0

naEa[ "5#

The crucial idea embodied in this equation surrounds the selection of some set of
representative atoms\ each of which are intended to characterize the energetics of
some spatial neighborhood within the body as indicated by the weight na[ As yet\ the
statement of the problem is incomplete in that we have not yet speci_ed how to
determine the summation weights\ na[ We treat the problem of the determination of
na in a manner analogous to determination of quadrature weights in the approximate
computation of de_nite integrals[ In the present context the goal is to approximate a
_nite sum "{{de_nite integral|| on the lattice# by an appropriately chosen quadrature
rule where the quadrature points are the site of the representative atoms[ Physically
the quantity na may be interpreted as the {{number of atoms represented|| by the
representative atom a[ The quadrature rule "eqn "5## is designed such that in the limit
in which the _nite element mesh is re_ned all the way down to the atomic scale "a
limit we denote as fully re_ned# each and every atomistic degree of freedom is
accounted for\ and the quadrature weights are unity "each representative atom rep!
resents only itself#[ On the other hand\ in the far _eld regions where the _elds are
slowly varying\ the quadrature weights re~ect the volume of space "which is now
proportional to the number of atoms# that is associated with the representative atom[
The details of this procedure may be found in Section 2[0[

The description given above describes the essence of the formulation as it is currently
practised[ We now describe an additional energetic approximation that simpli_es the
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energy calculations and also makes it possible to formulate boundary conditions
which mimic those expected in an elastic continuum[ The essential idea is motivated
by Fig[ 1\ which depicts the immediate neighborhood of a dislocation core[ In particu!
lar\ for this Lomer dislocation we note the characteristic geometric signature of the
core\ namely\ the pentagonal group of atoms in the core region[ We now focus our
attention on the environments of two of the atoms in this _gure\ one "labeled A# in
the immediate core region\ and the other "labeled B# in the far _eld of the defect[ It
is evident that the environment of atom A is nonuniform\ and that each of the
atoms in that neighborhood experiences a distinctly di}erent environment[ By way of
contrast\ atom B has an environment that may be thought of as emerging from a
uniform deformation\ and each of the atoms in is vicinity sees a nearly identical
geometry[

As a result of these geometric insights\ we have found it convenient to compute the
energy Ea from an atomistic perspective in two di}erent ways\ depending upon the
nature of the atomic environment of the representative atom a[ Far from the defect
core\ we exploit the fact that the atomic environments are nearly uniform by making
a local calculation of the energy in which it is assumed that the state of deformation
is homogeneous and can be well!characterized by the local deformation gradient F[
To compute the total energy of such atoms\ the Bravais lattice vectors of the deformed
con_guration ba are obtained from those in the reference con_guration Ba via ba �FBa[
Once the Bravais lattice vectors are speci_ed\ this reduces the computation of the
energy to a standard exercise in the practice of lattice statics[

On the other hand\ in regions that su}er a state of deformation that is nonuniform\
such as the core region around atom A in Fig[ 1\ the energy is computed by building a
crystallite that re~ects the deformed neighborhood from the interpolated displacement
_elds[ The atomic positions of each and every atom are given exclusively by

Fig[ 1[ Atomic structure near the core of a Lomer dislocation in Al[ The atom A in the core region
experiences an inhomogeneous environment while the environment of atom B is nearly homogeneous[
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x�X¦u"X#\ where the displacement _eld u is determined from _nite element interp!
olation[ This ensures that a fully nonlocal atomistic calculation is performed in regions
of rapidly varying F[ An automatic criterion for determining whether to use the local
or nonlocal rule to compute a representative atom|s energy based on the variation of
deformation gradient in its vicinity will be presented in Section 2[1[ The distinction
between local and nonlocal environments has the unfortunate side e}ect of intro!
ducing small spurious forces we refer to as {{ghost|| forces at the interface between
the local and nonlocal regions[ A correction for this problem is also discussed in
Section 2[1[

Once the total energy has been computed and we have settled both the kinematic
and energetic bookkeeping\ we are in a position to determine the energy minimizing
displacement _elds[ As discussed below\ there are a number of technical issues that
surround the use of either conjugate gradient or NewtonÐRaphson techniques[ Both
of these techniques are predicated upon a knowledge of various derivatives of the
total energy with respect to nodal displacements and are explained in Section 2[2[

As noted in the Introduction\ one of the design criteria in the formulation of the
method was that of having an adaptive capability that allowed for the targeting of
particular regions for re_nement in response to the emergence of rapidly varying
displacement _elds[ For example\ when simulating nanoindentation\ the indentation
process leads to the nucleation and subsequent propagation of dislocations into the
bulk of the crystal[ To capture the presence of the slip that is tied to these dislocations\
it is necessary that the slip plane be re_ned all the way to the atomic scale[ The
adaption scheme to be described in Section 2[3 allows for the natural emergence of
such mesh re_nement as an outcome of the deformation history[

The goal of the present section has been to elucidate the key conceptual elements
involved in using the quasicontinuum method[ However\ as was noted above\ certain
features in the formulation involve subtleties demanding further attention[ In the
following sections\ we undertake a more detailed analysis of some of those issues[

2[ Details of the methodology

2[0[ Reduced atomic representation

In this section we discuss the selection of the representative atoms\ and the con!
struction of an expression of the total energy that depends only on the degrees of
freedom of the representative atoms[ We consider the undeformed body to be a
crystalline solid\ i[e[\ a collection of N atoms\ which occupy a region B9 and may be
arranged in many grains Gm "see Fig[ 0#[ The undeformed position Xi of any atom i is
obtained from the coordinate of a reference atom and an associated set of Bravais
lattice vectors that are speci_ed for each grain as discussed earlier in eqn "0#[ The
deformed con_guration of the body is described by a displacement function u which
depends on X and the deformed position of any atom i can be obtained as
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xi �Xi¦ui\ "6#

where ui � u"Xi#[
On loading the solid\ the equilibrium con_guration of the body is de_ned by the

set of displacements ui which minimizes the potential energy function

P"u# �Etot "u0\ [ [ [ \ uN#− s
N

i�0

fi = ui "7#

where Etot is the total energy of the system obtained from an atomistic formulation\
fi is the external force acting on the atom i and u satis_es the essential boundary
conditions of the problem[ This is the well!known method of lattice statics "LS#[ Now\
as stated earlier\ we assume that Etot can be decomposed as a sum over the energies
of individual atoms Ei\ i[e[\

Etot "u0\ [ [ [ \ uN# � s
N

i�0

Ei"u0\ [ [ [ \ uN#\ "8#

and eqn "7# becomes

P"u# � s
N

i�0

Ei"u0\ [ [ [ \ uN#− s
N

i�0

fi = ui[ "09#

Many of the conventional atomistic formulations "such as the embedded!atom
method# admit such a decomposition\ although it is not admissible in the more
sophisticated density functional approach[ For example\ the embedded!atom method
"Daw and Baskes\ 0872# provides that for a homonuclear material the energy at site
i is given by

Ei �
0
1
ðs

j

f"rij#¦f"ri#\ "00#

where rij is the distance from atom i to the neighbor j\ f is a pairwise interaction\ ri

is the electron density at the site i and f"r# is the embedding energy[ The potentials
are assumed to have a cuto} radius of rcut\ i[e[\ any atom interacts directly only with
those atoms within a distance rcut from it[

The variational principle associated with eqn "09# provides the solution ui and may
lead to nonlinear minimization problems with intractable numbers of degrees of
freedom[ This motivates the need to formulate approximation strategies that preserve
the essential details of the problem while requiring fewer degrees of freedom[ The _rst
step in our approximation method is the selection of a subset of R atoms "R ð N#
called representative atoms\ to describe the kinematics and energetics of the body[ To
motivate the reasoning underlying this approach\ we revisit Fig[ 1 discussed earlier
where the atomic structure in the vicinity of a relaxed Lomer dislocation in fcc
aluminum is presented[ Two atoms have been highlighted along with their respective
environments[ Atom A lies at the dislocation core itself\ while atom B is further away[
In the region around atom A\ the deformation _elds are changing rapidly on the scale
of atomic distances[ The non!uniform nature of the deformation near the dislocation
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core implies that all atoms in that region experience completely di}erent environments[
At the same time\ many of the atoms in the vicinity of atom B experience environments
nearly identical to that of atom B\ and thus are nearly energetically equivalent to
atom B[ This conclusion naturally leads to the concept of representative atoms
mentioned above[ In this case\ atom B could well represent several of its neighbors\
due to their similar environments\ while all atoms near A have to be chosen as
representative atoms[ Where the deformation gradients are large and quickly varying
on the atomic scale more representative atoms will be selected\ while further away
fewer will be explicitly considered[ Such a representation is presented in Fig[ 2"a# for
the same dislocation core structure[ We see that near the core region all atoms are
represented\ while further away\ where the deformation is more homogeneous\ the
density of representative atoms is reduced[

The displacements "ua# of the representative atoms are the relevant degrees of
freedom of the system[ The next task is to construct an approximate energy function
Ph that depends only on "ua#[ To achieve this we _rst need a kinematic description
of the body\ i[e[\ we need a tool to describe the deformed positions of every atom in
the body when the displacements of the representative atoms are known[ This is
achieved by the construction of a _nite element mesh "Ve\ e�0\ [ [ [ \M\ where M is
the number of elements# with the representative atoms as nodes "cf Fig[ 2"b##[ The
deformed position of any atom in the model is then obtained by interpolation using
the _nite element shape functions and the displacements of the representative atoms ^
the deformed con_guration of the body may thus be completely described[ We have
chosen to use linear triangular _nite elements "i[e[ the deformation gradient is constant
in each element#\ which are generated using the constrained Delaunay triangulation
"Sloan\ 0882#[ This triangulation allows for the convenient treatment of non!convex\
multiply connected regions[

Fig[ 2[ "a# Selection of representative atoms in the case of the Lomer dislocation in Al[ Filled circles are
representative atoms while open circles correspond to atoms whose positions are constrained[ "b# Finite
element mesh constructed to simulate the Lomer dislocation in Al for the choice of representative atoms
shown in "a#[
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The energy of the body is described by eqn "5#\ and requires a knowledge of na[ As
explained above\ these quantities may be thought of as quadrature weights for the
summation on the discrete lattice[ We now discuss the computation of na[ Let ` be a
real valued function on the lattice with `"Xi# being its value at the site i[ We de_ne

S"`# � s
N

i�0

`"Xi#[ "01#

as the sum of `[ If this sum is to be evaluated using the values of ` only at the
representative atoms\ `"Xa#\ and a quadrature rule\ we have

Sh"`# � s
R

a�0

na`"Xa#[ "02#

The values of na may now be determined by insisting that

S"`b# �Sh"`b# "03#

for some functions `b "b�0\ [ [ [ \R# chosen a priori\ i[e[\ by insisting that the quad!
rature rule should sum the functions `b exactly[ There are many possible choices of
`b\ some of which we discuss below[

"0# Voronoi characteristic functions[ The function `b is chosen to be the characteristic
function of the Voronoi cell Vb "Okabe et al[\ 0881#\ associated with representative
atom b\

xV
b "Xi# � 0\ [Xi $Vb

� 9\ otherwise[ "04#

Setting `b �xV
b and applying the relation in eqn "03# we obtain nb such that

nb �Sh"xV
b # �S"xV

b # �s
i

xV
b "Xi#[ "05#

It is easily seen that na admits a simple interpretation as the total number of atoms
in the Voronoi cell of representative atom a[

"1# Patch characteristic functions[ We de_ne a patch "Pb# surrounding a representative
atom:node b as the polygon constructed by joining the centroids and midpoints
of the edges of the elements incident on the representation atom[ The function `b

is chosen to be the characteristic function of the patch Pb and it is now immediate
that

nb �S"xP
b # � s

N

i�0

xP
b "Xi# "06#

and again nb may be interpreted as the number of atoms contained in the patch
Pb[

"2# FE shape functions[ Here we choose the function `b to be the _nite element shape
function Nb\ and in a manner similar to the above two cases it follows that
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nb �S"Nb# �s
i

Nb"Xi#[ "07#

Some remarks are in order[ First\ note that in each case\ the functions `b are chosen
so that their value is unity at the representative atom b and vanishes at all other
representative atoms[ Second\ the _rst two alternatives require the explicit con!
struction of a tessellation "either Voronoi cells or the patches#[ Third\ all the alter!
natives provide the quadrature weight to be unity at a representative atom situated
in a fully!re_ned region[ It has been found that the results of the calculations are
insensitive to the choice of the di}erent schemes[

Armed with the values of na and eqn "5# the approximate energy function Ph may
be written as

Ph"u# � s
R

a�0

naEa"u0\ [ [ [ \ uR#− s
R

a�0

naf¹a = ua\ "08#

where f¹ is the average force on representative atom a\ and the subscript h refers to the
approximation introduced by the _nite element partitioning[ In the event that one
chooses all the atoms in the model the energy in eqn "08# reduces to the exact function
of eqn "09# and one recovers lattice statics[

2[1[ Computation of representative atom ener`ies

The energy of any representative atom may be computed by creating a list of its
neighbors "we call such a list the representative crystallite#\ and obtaining the
deformed positions of these neighbor atoms using the _nite element interpolation[
This approach will require the explicit neighbor list computation of each of the
representative atoms and proves to be very time consuming[ A more e.cient strategy
can be formulated as follows[ Consider the atom B in Fig[ 1[ This atom experiences
only a slowly varying deformation\ and its energy can be well approximated by that
computed using the local deformation gradients and the CauchyÐBorn rule "Ericksen\
0873 and references therein# which states that the atoms in a deformed crystal will
move to positions dictated by the existing gradients of displacements[

On the other hand\ in the region around atom A\ the deformation _elds are changing
rapidly on the scale of atomic distances[ This observation suggests a division of the
representative atoms into two classes "a# nonlocal atoms whose energies are computed
by an explicit consideration of all its neighbors and "b# local atoms whose energies
are computed from the local deformation gradients using the CauchyÐBorn rule[ The
former type of representative atoms are essential to capture the atomistic nature of
defect cores and interfaces while the latter represents the continuum limit and is used
in regions of the solid undergoing only a near homogeneous deformation[ It is
emphasized that the local formulation is an approximation that provides for e.cient
computation[

We now discuss the criterion that decides if a given representative atom is to be
treated as local or nonlocal[ The representative crystallite of a representative atom
experiences various deformation gradients arising from the di}erent elements that
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surround it[ A state of deformation near a representative atom is near homogeneous
if the deformation gradients that it senses from the di}erent elements are nearly equal[
This can be characterized by the inequality

max
a\b^k

=la
k−lb

k = ³ oL "19#

where a and b run over all elements that are within some radius rs of the representative
atom discussed presently\ le

k is the kth eigenvalue of the right stretch tensor Ue "see
for example\ Chadwick\ 0865# obtained from the deformation gradient Fe in element
e\ and oL is an empirically selected constant[ This criterion implies that the error in
the computation of the energy using the local deformation gradients when compared
with a fully atomistic calculations of the energy is within a speci_ed tolerance[ Thus
all atoms for which eqn "19# is satis_ed are treated as local atoms while for the
remaining atoms the nonlocal rule is used to compute the energy[ In addition\ any
atom which is within rs of a surface or interface of interest is made nonlocal[

Using the above criterion\ the total number of nonlocal atoms in the model is
determined by two prescribed parameters\ the tolerance on the eigenvalues\ oL\ and
the range of nonlocal in~uence\ rs[ For correct surface and interfacial energy\ atoms
within rcut of the interface must be nonlocal "i[e[ rs � rcut#[ For correct forces and
sti}ness "promising a correct relaxed con_guration# each of these atoms must be
embedded in a further rcut radius of nonlocal atoms\ bringing the total necessary
nonlocal padding to rs �1rcut[ A lesser padding will result in less demanding com!
putational models with fewer degrees of freedom at the expense of more appropriate
interfacial and defect core structures[

The total energy "eqn "08## can now be separated into its local and nonlocal
contributions\

Ph"u# � s

RL

a�0

naE
loc
a "F0\ [ [ [ \FM#¦ s

RNL

b�0

nbEb"u0\ [ [ [ \ uR#− s
R

a�0

naf¹a = ua\ "10#

where there are RL local atoms and RNL nonlocal atoms "such that RL¦RNL �R#[
The procedure used in the calculation of energies of the local atoms from the

local gradients of deformation is taken up presently[ Consider representative atom a

experiencing near homogeneous deformation[ If ne
a denotes S"x"Ve# = `a#\ which may

be interpreted as the number of atoms associated with the element Ve represented by
the representative atom a\ then the energy E loc

a is approximated by

naE
loc
a � s

M

e�0

ne
aE"Fe#\ na � s

M

e�0

ne
a\ "11#

where E"F# is the energy of a single atom experiencing a homogeneous deformation
given by the deformation gradient tensor F[

The nonlocal energy Eb"u0\ [ [ [ \ uR# is computed as it would be in a standard
atomistic calculation[ The energy of atom b is a function of the positions of all atoms
falling inside its cuto} sphere for the given deformation[ We assume there are mb such
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neighbors which occupy positions Xj
b\ j�0\ 1\ [ [ [ \ mb in the undeformed con_gur!

ation[ The deformed positions of these atoms relative to atom b will be

rj
b �Xj

b¦uj
b−Xb−ub\ "12#

where Xb and ub are the coordinates and displacements at atom b and ub
j is the

displacement interpolated to the site of neighbor j of atom b and is given by

uj
b � s

R

a�0

uaNa"Xj
b#\ "13#

where ua is the displacement at representative atom:node a\ Na is the associated _nite
element interpolation function[ Substituting eqn "11# into eqn "10# and speci_cally
accounting for the dependence of Eb on rj

b we have

Ph"u# � s

RL

a�0

s
M

e�0

ne
aE"Fe#¦ s

RNL

b�0

nbEb"r0
b \ [ [ [ \ rmb

b #− s
R

a�0

naf¹a = ua[ "14#

The sums in the _rst expression of eqn "14# can be reversed so that

Ph"u# � s
M

e�0

veE"Fe#¦ s

RNL

b�0

nbEb"r0
b \ [ [ [ \ rmb

b #− s
R

a�0

naf¹ = ua\ "15#

where

ve � s

RL

a�0

ne
a "16#

is the total number of atoms "associated with local representative atoms# falling in
element e[

Although eqn "15# is a complete description of the approximate energy function\
and represents a mathematically consistent formulation\ it leads to noisy solutions in
the presence of nonlocal representative atoms with weights exceeding unity[ Expressed
di}erently\ solutions are smoother when nonlocal representative atoms are present
only in the fully re_ned regions[ The cause of this noise or error may be traced to the
non!uniformity in the constrained kinematics due to a non uniform mesh "this e}ect
has been noted by Tadmor et al[ "0885# and detailed in Tadmor "0885##[ The remedy
for this problem is to fully re_ne the mesh around atoms that are treated nonlocally\
and as a result the weights associated with the nonlocal atoms will be unity[ The
resulting approximate energy function eqn "15# reduces to

Ph"u# � s
M

e�0

veE"Fe#¦ s

RNL

b�0

Eb"r0
b \ [ [ [ \ rmb

b #− s
R

a�0

naf¹a = ua[ "17#

In the type of con_gurations we have studied\ nonlocal atoms tend to appear in
groups we refer to as clumps\ surrounded by local atoms[ The local and nonlocal
formulations are not completely compatible and\ although there is no seam in the
formulation of the energy function\ non!physical forces arise on atoms in transition
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zones between local and nonlocal regions\ even when the crystal is undeformed[ To
illustrate this point\ consider a fully re_ned mesh as shown in Fig[ 3[ The atoms
represented by open circles are local atoms whereas the dark ones are nonlocal[ The
circle drawn around nonlocal atom A represents its cuto} sphere[ On the one hand\
as local atom B lies inside the sphere\ its motion a}ects A and 1ENL

A :1uB � 9\ which
corresponds to a force acting on B due to A[ On the other hand\ the energy of B is
computed locally and depends only on atoms which share a common element with B
"the shaded elements in Fig[ 3#[ Therefore\ 1EL

B:1uA � 9 and the motion of A does
not lead to forces on B[ These imbalances result in non!physical forces on A and B\
which we call {{ghost|| forces[ Their order of magnitude is 9[0 eV:_ and can lead to
energy relaxation of order 9[994 eV[ The principal reason for these erroneous unbal!
anced forces is the fact that our procedure has focused on approximating the energy
and not the forces[

In order to avoid the ghost forces\ we have to correct the forces acting on atoms in
the transition zones[ This is achieved by demanding that forces acting on any atom
be computed using only the formulation which corresponds to its status\ as if the
atom was in a fully local or nonlocal region[ For example\ the nonlocal term
1ENL

A :1uB is not added to the forces acting on local atom B and a term 1ENL
B :1uA is

computed for atom A[ Ghost forces do not derive from a potential and as a result
they are not symmetrical\ i[e[ the ghost force on B due to A is not equal to that due
to A on B[ Thus they cannot be corrected in the energy directly[ They are instead
computed each time the status of the representative atoms is updated and are then
held constant until the next update required due to the evolving state of deformation[
These dead loads fG can be incorporated as corrections to the energy function ]

P?h"u# �Ph"u#−s
a

fGa = ua[ "18#

The ghost forces are a function of atomic positions and thus new ghost forces arise\

Fig[ 3[ Illustration of the origin of {{ghost|| forces[
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once atoms relax[ Their norm is linked to the size of relaxation in transition regions[
For example\ in the case of the relaxation of a twin boundary in aluminum "see
Section 3#\ the di}erence in ghost forces before and after relaxation is 2×09−5 eV:_
corresponding to an energy relaxation of order 09−6 eV[ More generally\ we observe
that the magnitude of the those forces is decreased only by a factor of the order of
ten when the dead load approximation described here is applied[ Nevertheless\ this
procedure improves the accuracy of the solutions in transition zones[

The complete energy function including the approximate ghost force correction is
then

P?h"u# � s
M

e�0

veE"Fe#¦ s

RNL

b�0

Eb"r0
b \ [ [ [ \ rmb

b #− s
R

a�0

na"f¹a¦fGa # = ua[ "29#

2[2[ Ener`y minimization

We are interested in obtaining equilibrium con_gurations of the solid[ We thus
invoke the principle of minimum potential energy which states that a system will be
at equilibrium when its potential energy is minimum[ The potential energy of our
reduced atomic system is given above in eqn "29#[ To minimize this energy we have
used both conjugate gradient algorithms "Papadrakakis and Ghionis\ 0875# and quasi!
Newton algorithms "Dennis and Schnabel\ 0872#[ The conjugate gradient algorithm
requires computation of the gradient of eqn "29# with respect to the representative
atom displacements "i[e[ the system degrees of freedom#[ The quasi!Newton method
requires in addition also the Hessian of eqn "29#\ i[e[ the second gradient with respect
to displacements[ These will be evaluated in this section for generic interatomic
interactions that can be written in the form given by eqn "4#[

The gradient of the potential energy "also referred to as the out!of!balance force
vector# is given by

1P?h
1ua

� s
M

e�0

veP"Fe#
1Fe

1ua

− s

RNL

b�0 $ s

mb

j�0

8j
b

1rj
b

1ua%−na"f¹a¦fGa #\ "20#

where P� 1E:1F is the _rst PiolaÐKirchho} stress tensor and 8j
b �−1Eb:1rj

b is the
force on atom b due to its neighbor j[ The deformation gradient Fe can be expressed
in terms of the nodal displacements and _nite element interpolation functions as

Fe � I¦ s
R

a�0

ua99Na"Xe#I "21#

where 99 � 1:1X is the material deformation gradient\ I is the identity matrix\ and
for the constant strain elements we use\ Xe is the element centroid[ We then have

1Fe

1ua

�99Na"Xe#\ "22#

and similarly by using eqn "12#
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1rj
b

1ua

�"Na"Xj
b#−dab#I[ "23#

Substituting eqns "22#Ð"23# into eqn "20# and rearranging\ we have

1P?h
1ua

� s
M

e�0

veP"Fe#99Na"Xe#− s

RNL

b�0 $ s

mb

j�0

cj
bNa"Xj

b#%¦ s

ma

j�0

8j
a−na"f¹a¦fGa #\ "24#

where it is understood that the third sum is zero when atom a is local[ In the limit
where all atoms are local the ghost force contribution drops out and eqn "24# reduces
to

1P?h
1ua bloc

� s
M

e�0

veP"Fe#99Na"Xe#−naf¹a[ "25#

We thus have a continuum representation of the boundary value problem with the
exception that the constitutive law\ P"F# � 1E:1F\ is nonlinear and obtained from an
atomistic calculation[

In the fully!re_ned limit where all atoms are represented and nonlocal\ the ghost
forces similarly drop out\ and so does the term with the local contributions[ We can
separate the _rst nonlocal sum into two parts

1P?h
1ua bnonloc

�− s

RNL

b�0
b�a
$ s

ma

j�0

8j
bNa"Xj

b#%− s

ma

j�0

8j
aNa"Xj

a#¦ s

ma

j�0

8j
a−fa[ "26#

Here the shape function acts as a Kronecker delta function\ thus Na"Xj
b# is equal to

one when neighbor j of atom b is atom a[ We thus see that the second sum drops out
since Na"Xj

a# is always zero "atom a cannot be a neighbor of itself#\ so eqn "26# reduces
to

1P?h
1ua bnonloc

�− s

RNL

b�0
b�a
$ s

mb

j�0

8j
bNa"Xj

b#%¦ s

ma

j�0

8j
a−fa[ "27#

The _rst term is the sum of forces exerted on all other atoms by atom a[ The second
term is the sum of forces exerted on atom a by all of its neighbors[ The third term is
the external force acting on atom a[

For conjugate gradient minimization the expression in eqn "24# is all that is needed[
The algorithm constructs a series of conjugate search directions from the current
gradient and previous search directions and proceeds to minimize along each direction
using a line search routine "see Papadrakakis and Ghionis\ 0875 for more details#[
An alternative approach is to iteratively solve 1P?h:1ua � 9 by substituting

1P?h
1ua bI¦0

¼
1P?h
1ua bI¦s

b

11P?h
1ua 1ub bI duI¦0

b � 9\ "28#

where I is an iteration counter[ The Hessian or second gradient expression is the
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sti}ness matrix Kab and is obtained by di}erentiating eqn "24#[ Following a similar
procedure to that used for obtaining eqn "24# itself we have

Kab � s
M

e�0

veC"Fe#99Na"Xe#99Nb"Xe#¦ s

RNL

g�0 $ s

mg

k�0

s

mg

l�0

kkl
g Na"Xk

g #Nb"Xl
g#%

− s

ma

k�0

s

ma

l�0

kkl
a Nb"Xl

a#− s

mb

k�0

s

mb

l�0

kkl
b Na"Xk

b#¦dab s

ma

k�0

s

ma

l�0

kkl
a \ "39#

where C� 11E:1F 1 is the Lagrangian tangent sti}ness tensor and kkl
b � 11Eb:1rk

b 1rl
b

is an atomic level sti}ness[
The solution then proceeds iteratively by solving eqn "28# as stated or in reduced

notation

s
b

KI
abduI¦0

b ¦FI
a � 9\ "30#

where FI
a �"1P?h:1ua# =I is the out!of!balance force vector de_ned above in eqn "24#[

In the NewtonÐRaphson method the displacements at each iteration are updated by

uI¦0
a � uI

a¦duI¦0
a \ "31#

while for a quasi!Newton solver a line search minimization is done along the search
directions given by duI¦0

a [ The procedure continues until >FI
a> is reduced su.ciently

for all a[

2[3[ Automatic adaption

The realization that much of the computation in straightforward atomistic simu!
lation is wasted due to the su.ciency of local continuum approximations far from
defects is not new[ A number of mixed continuum and atomistic models have been
proposed in recent years to capitalize on this feature "some were referenced in the
Introduction and others can be found in Tadmor\ 0885#[ The standard approach in
these models is to a priori identify the atomistic and continuum regions and tie them
together with some appropriate boundary conditions[ In addition to the disadvantage
of introducing arti_cial numerical interfaces into the problem\ a further drawback of
these models is their inability to adapt to changes in loading and an evolving state of
deformation[ Take for example the problem of nanoindentation[ As the loading
progresses and dislocations are emitted under the indenter\ the computational model
must be able to adapt and change in accordance with these new circumstances[

In the current formulation we tie the need for automatic adaption to an estimate
of the error introduced by the reduction of degrees of freedom[ It is then possible to
identify regions where this error estimator is high\ and subsequently add degrees of
freedom in these regions[ The result is an automatic adaption scheme analogous to
adaptive remeshing in _nite elements[

To include such an adaption procedure in the method\ we appeal to _nite element
literature\ where error estimators and automatic mesh re_nement have been subjects
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of extensive research[ Recall that our collection of representative atoms are also nodes
on a _nite element mesh of constant strain triangles[ Thus\ we use the error estimator
_rst introduced by Zienkiewicz and Zhu "0876# in terms of stresses and later modi_ed
by Belytschko and Tabbara "0882# to estimate errors in the strain _elds[ In our case\
the deformation gradient\ F\ is already needed for computing atomic energies\ forces
and sti}ness\ and therefore it is convenient to write the ZienkiewiczÐZhu error esti!
mator directly in terms of the deformation gradient[ Thus\ we de_ne the discretization
error in element e as

oe � $
0
Ve gVe

"FÞ−Fe#T"FÞ−Fe# dV%
0:1

\ "32#

where Fe is the _nite element solution for the deformation gradient in element e\ and
FÞ is the L1!projection of the _nite element solution for F\ given by

FÞ�Nf[ "33#

Here\ N is the shape function array\ and f is the array of nodal values of the projected
deformation gradient FÞ[ Because the deformation gradient is constant within each
constant strain element\ the nodal values f are simply computed by averaging the
deformation gradients over all of the elements in contact with the node of interest[
The integral in eqn "32# can be computed quickly and accurately using a three!point
Gaussian quadrature rule[ Elements for which the error oe is greater than some
prescribed error tolerance oA are targeted for re_nement[

Re_nement then proceeds by adding three new representative atoms at the atomic
sites closest to the midsides of the targeted elements[ Notice that since representative
atoms must fall on actual atomic sites in the reference volume B9\ there is a natural
lower limit to element size[ If the nearest atomic sites to the midsides of the elements
are the atoms at the element corners\ the region is fully re_ned and no new rep!
resentative atoms are added[ Actual examples of evolving mesh re_nement are given
in Fig[ 4 for the indentation problem[

In addition to mesh re_nement\ mesh coarsening is also an important requirement[
For example\ consider the passage of a dislocation[ As the dislocation moves it leaves
a trail of fully re_ned mesh in its wake corresponding to previous core positions[
Far behind the dislocation the solid is undistorted and the high mesh resolution is
unnecessary and could be coarsened[ To coarsen the following algorithm is applied ]
"0# for each local node:atom the elements surrounding the node and the polygon
de_ned by their outer sides is identi_ed ^ "1# if none of these elements satisfy the
adaption criterion\ remove the current local node and create a new Delaunay tri!
angulation of the outer polygon ^ "2# if none of the new elements satisfy the adaption
criterion then the local node and all the old elements connected to it are deleted and
the new elements are accepted[ Essentially\ the idea is to examine the necessity of
each node[ To prevent excessive coarsening of the mesh far from defects\ the nodes
corresponding to the initial mesh are usually protected from deletion[
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Fig[ 4[ Automatic adaption process in action for the problem of nanoindentation[
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2[4[ Puttin` it all to`ether

To demonstrate the steps involved in an adaptive quasicontinuum analysis consider
the problem of nanoindentation depicted in Fig[ 5[ Here a rigid rectangular indenter\
in_nite in the out!of!plane direction\ is pressed into the free surface of a thin _lm
aluminum single crystal[ The dimensions and crystallographic orientation are given
in the _gure[ We are interested in applying a quasicontinuum analysis to this problem
"which is too large to be comfortably tackled by direct atomistics# to obtain such data
as load vs indentation curves\ the criterion for dislocation nucleation under the
indenter and stress distributions[

Di}erent boundary conditions are possible to characterize this problem[ It is poss!
ible to model the indenter as well as the _lm and consider the interactions between
indenter atoms and _lm atoms[ However in the interest of simplicity we choose to
neglect these e}ects and model the indenter as a rigid displacement boundary
condition\ i[e[ all atoms on the surface under the indenter are forced to move down
with it[ In addition the displacements parallel to the indenter face and in the out!of!
plane direction can be constrained to mimic perfect stick conditions or released for a
friction free indenter[ The rest of the surface is left free and unconstrained[ Far from
the indenter\ symmetry boundary conditions are applied to the model right and left
edges and the substrate is taken to be rigid with zero displacements at the interface[

We need to select an initial set of representative atoms[ A fully!re_ned mesh in the
vicinity of the indenter is desired from the start in order to capture surface e}ects
there and have su.cient resolution to accommodate the indenter geometry[ The
details of the initial mesh generation may be found in Tadmor "0885#[ the simulation
proceeds as follows ]

"0# Next load step*the indenter is driven another step into the crystal "9[1 _ in these

Fig[ 5[ Nanoindentation in an aluminum single crystal[
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simulations# by rigidly displacing the atoms under the indenter downward by the
appropriate amount[

"1# Local:nonlocal status computation*the locality criterion de_ned in eqn "19# is
evaluated for each representative atom and its status is determined[ Signi_cant
preprocessing is done at this stage "such as the storage of atom lists and com!
putation of shape functions# to speed up the computations "see Tadmor\ 0885 for
details#[

"2# Ghost force evaluation*ghost forces are computed and applied as dead loads[
"3# Energy minimization*a quasi!Newton solver is used to iteratively minimize the

total potential energy and to identify the equilibrium con_guration of the system
subject to the new load step boundary conditions[

"4# Automatic adaption*all elements in the mesh satisfying the adaption criterion
are adapted\ i[e[ divided into smaller elements[ Since all nodes must occupy atomic
sites a natural cuto} commensurate with the lattice spacing prevents inde_nite
adaption[ At the same time that elements are being checked for adaption they
can also be checked for coarsening and removed if they are not necessary[

"5# If elements have been added "or removed# in the adaption phase the system will
no longer be in equilibrium "since the system has changed#[ In this case return to
"1# to obtain the new relaxed con_guration[

"6# Output*load:displacement data\ displacement contours\ stress and strain
contours\ energy\ atomic structure\ etc[

"7# Proceed to "0# for next load step[

A series of snapshots of the progressing adaption for this problem were given in
Fig[ 4[ The loadÐdisplacement curve computed for an embedded atom model of
aluminum due to Ercolessi and Adams "0881# is given in Fig[ 6"a#[ The response is

Fig[ 6[ "a# Load vs indenter displacement[ Result obtained from QC simulation of nanoindentation on a
single crystal Al[ "b# Atomic structure under indenter after nucleation of a dislocation[



V[B[ Shenoy et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 500Ð531 522

initially linear as predicted by elasticity theory\ until dislocations are nucleated at a
critical load[ The atomic structure under the indenter after dislocation nucleation is
presented in Fig[ 6"b#[ A far more detailed discussion of this simulation and others
for di}erent orientations and indenter geometries are presented in Tadmor et al[
"0886#[

In Section 5 nanoindentation in an aluminum bicrystal is discussed in more detail[
There the nanoindentation is used as a means for generating dislocations\ as a {{dis!
location gun||\ in order to probe the interaction of dislocations with grain boundaries[

3[ Validation

As was noted in earlier work\ our aim with the quasicontinuum method is to
properly recover two limiting cases[ On the one hand\ one aims to restore conventional
atomistic simulation in the limit that full atomic resolution is adopted everywhere[
The benchmark of such a success is whether or not the quasicontinuum results for
defect cores are in accord with those obtained by conventional atomistic simulation[
On the other hand\ restoration of the continuum limit in the event of only long
wavelength deformations is revealed in features such as the appropriate dispersion
relation for long wavelength elastic waves[

This section contains the validation of the formulation presented in the previous
section[ We compare the results obtained using QC with those obtained from lattice
statics "LS# in the cases of a "000# free surface in aluminum\ a twin boundary in
aluminum\ a S4 boundary in gold\ and a S88 boundary in aluminum[ Aluminum was
modeled using the embedded!atom potentials developed by Ercolessi and Adams
"0882# and gold with the FinnisÐSinclair potentials of Ackland et al[ "0876#[ In all the
cases\ representative atoms within a distance of 1rcut from the interface are treated
using the nonlocal rule[

The "000# free surface in aluminum was modeled using a block of atoms with
dimension 003 _×54 _[ Table 0 shows a comparison of the relaxed energies of the
atoms in di}erent layers with those obtained from direct atomistics[ The energies of

Table 0
Comparison of energies of atoms as obtained from
LS and QC for the "000# free surface[ Layer A is the
outermost layer

Layer LS "eV# QC "eV#

A 9[2322 9[2322
B 9[9257 9[9256
C 9[9913 9[9914
D 9[9992 −9[9992
E 9[9999 9[9999
F 9[9999 9[9999
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Fig[ 7[ Finite element mesh used in the simulation of a twin boundary in Al[ Inset shows structure of the
boundary[ ž*nonlocal representative atoms\ �*local representative atoms[

the _rst three layers are in good agreement with those computed via LS[ The relaxation
process brings about a separation of 9[910 _ between layers A and B and the layers
B and C are closer by 9[992 _ which are equal to those obtained with LS[

A block of size 007 _×111 _ was used to simulate a twin boundary "S�2"001Þ##
in aluminum[ The twin plane was chosen to be the y�9 plane as shown in Fig[ 7[
The comparison of relaxed energies obtained from LS and QC are shown in Table 1[
The y!displacement "u1# obtained from QC "with and without the ghost force removal
algorithm# is compared with that from LS in Fig[ 8\ where the agreement is seen to
be excellent when the ghost forces are corrected[ The errors caused by the ghost forces
are also seen in this _gure[

Table 1
Comparison of energies of atoms as obtained from
LS and QC for the twin boundary

Layer LS "eV# QC "eV#

A −9[9940 −9[9940
B 9[9011 9[9012
C 9[9920 9[9920
D 9[9999 9[9999
E 9[9999 9[9999
F 9[9999 9[9999
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Fig[ 8[ Comparison of the QC solution "with and without the ghost force correction algorithm# with LS
for the atomic displacements in the vicinity of a twin boundary in Al[

Fig[ 09[ "a# Comparison of atomic structure of a S4"109# boundary in Au computed using the QC method
with that obtained from LS[ "b# Comparison of atomic structure of a S88"446# boundary in Al computed
using the QC method with that obtained from LS[ �*LS\ ž*representative atoms in QC[
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Ackland et al[ "0876# have carried out lattice statics simulations of the S4"109#
boundary in Au[ Figure 09"a# shows a comparison of the structure obtained using
QC with that obtained using LS where the agreement is seen to be excellent[ The
value of the grain boundary energy computed using QC is 569 mJ:m1 which is
consonant with the 565 mJ:m1 obtained by Ackland et al[ "0876#[

A more complex S88"446# boundary was also simulated using QC ^ the comparison
with LS solution is shown in Fig[ 09"b#[ The structure obtained here also agrees well
with that of Dahmen et al[ "0889# who performed a combined theoretical:experimental
study of this boundary "by visual inspection\ a quantitative comparison was not
made#[

We conclude this section by noting that in all the cases presented above the QC
solution of the interfacial structure agrees well with those obtained from lattice statics[
The implication of this success is that the method has been shown to be a viable
alternative to lattice statics when simulating grain boundaries and thus may be used
for simulations involving interfacial deformation[

4[ Interfacial motion

The macroscopic plastic behavior of a solid is a cumulative result of the motion of
dislocations[ In addition\ grain boundaries also accommodate plastic deformation by
processes such as sliding[ In such cases it is of interest to study inhomogeneities on
the grain boundary\ i[e[\ grain boundary defects and their interaction with an applied
stress[ The _rst example described in this section attempts to investigate the e}ect of
stress on a twin boundary with a step[ As a second example\ we describe simulations
where we study dislocations interacting with grain boundaries[

The QC method may be used to study the interaction of interfacial inhomogeneities
with an external stress[ The goals of such simulations are twofold ] "a# the deter!
mination of the critical load required to induce plastic deformation and "b# the
elucidation of the mechanism of such deformation[ The present example is that of a
step on a twin boundary "S�2"000## in aluminum and its interaction with an applied
shear stress[ The _nite element mesh and the associated step geometry are shown in
Fig[ 00[ The step is subjected to a far!_eld homogeneous shear deformation which is
e}ected by the application of kinematic boundary conditions\ equivalent to the shear
stress\ on the boundary of the model[ Figure 01"a# shows the relaxed con_guration
of the step in the absence of applied loads[ On application of the load\ the solid
undergoes a near homogeneous deformation\ and on attainment of a critical stress
t�\ the stepped boundary undergoes an inhomogeneous deformation ^ the con!
_guration after this event is shown in Fig[ 01"b#[ An examination of Fig[ 01 reveals
the migration of the twin boundary by the nucleation of two "a95#ð0Þ0Þ1Ł Shockley edge
dislocations "the Burgers vector is perpendicular to the dislocation line# from the
corners of the step[ The value of the displacement jump computed from the simulation
corresponds to the Burgers vector of a "a9:5#ð0Þ0Þ1Ł dislocation which is equal to
0[535 _ in the case of aluminum[ On nucleation\ the dislocations move towards the
boundary of the simulation cell and are eventually stopped by it[ The critical value of
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Fig[ 00[ Finite element mesh used in the simulation of the interaction of an applied stress with a step on a
twin boundary[

Fig[ 01[ "a# Initial atomic con_guration near the step on a twin boundary[ "b# Final atomic con_guration
near the step ^ the new position of the boundary is schematically indicated[

nondimensional stress t�:m is found to lie between 9[920 and 9[925 and is found to be
insensitive to the cell size chosen for the simulation[ Figure 02 shows a plot of e}ective
load "norm of the reaction vector# versus the net global shear strain\ where a drop in
the e}ective load is seen at the critical strain[ This drop in the load can be estimated
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Fig[ 02[ Load vs applied strain response of the stepped twin boundary[ After a critical strain is reached\
the step yields[

using a simple linear elastic theory[ It is seen that the initial part of this curve is a
liner function of the global strain\ and at these strain levels all the strain is elastic[ On
the nucleation of the dislocations "at a global strain level of 9[925#\ the net elastic
strain falls to 9[917[ The load corresponding to this strain obtained for the linear part
of the curve is 2[41 eV:_ while the value of the e}ective load obtained from the
simulation at a global strain level of 9[925 is 2[61 eV:_[ The value obtained from the
simulation is expected to be higher than that predicted due to the fact that the
dislocations are trapped near the boundary of the simulation cell\ and thus the elastic
strain is not reduced to the value obtained from the simple analysis[

It is interesting to contrast the critical stress t� with a typical Peierls stress for a
straight dislocation[ For example\ in the case of a screw dislocation in this metal the
Peierls stress is 9[99957 u "Shenoy and Phillips\ 0886#\ nearly _fty times smaller than
the critical stress for advancing the twin boundary[ As another comparison to set the
scale of the stresses determined here\ the stress to induce motion of the twin boundary
can be compared with that to operate a FrankÐRead source which is s¼mb:L\ where
L is the width of the source "Hull and Bacon\ 0881#[ In the light of this estimate\ the
stress to induce motion of the twin boundary is of the same order as that to operate
a FrankÐRead source of width ¼ 24 b "where b is a typical Burgers vector#[ Although
typical FrankÐRead sources are larger than 24 b and hence operate at even lower
stresses\ the stress found to stimulate motion of the twin boundary is still signi_cantly
smaller than the ideal shear strength\ and is an example of the {{lubricating|| e}ect of
heterogeneities in the motion of extended defects[



V[B[ Shenoy et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 500Ð531 528

5[ Interaction of lattice dislocations with a grain boundary

The interaction of dislocations with grain boundaries has been identi_ed as an
important factor governing the yield and hardening behavior of solids[ For example\
the dependence of the yield stress on the grain size given by the celebrated HallÐPetch
relationship "see\ for example\ Hirth and Lothe\ 0857#\ is explained using a pile!up
model which assumes that dislocations are stopped by the grain boundary[ In this
section we illustrate how the QC method can be used to build realistic models that
address the issue of the interaction of lattice dislocations with grain boundaries[ For
the speci_c GB we consider\ we con_rm the hypothesis that a pile!up will indeed
occur\ and that no!slip transmission takes place across the boundary[

We study the interaction of "a9:1#ð0Þ09Ł dislocations with a S�6"13Þ0Þ# symmetric
tilt boundary in aluminum[ Figure 03 shows a bicrystal\ the top face "between A and
B in Fig[ 03# of which is subject to a kinematic boundary condition that mimics the
e}ects of a rigid indenter[ On attainment of a critical load\ dislocations are nucleated
at the point A\ and they move towards the grain boundary[ We investigate the
nature of the interaction of these dislocations and the grain boundary through the
consideration of the following questions ] will the dislocation be absorbed by the
boundary\ and if so what is the result of this process< Will the dislocation cause a
su.cient stress concentration at the boundary so as to result in the nucleation of a
dislocation in the neighboring grain<

Fig[ 03[ Mesh designed to model the interaction of dislocations and a grain boundary[ Dislocations are
generated at the point A by rigidly indenting on the face AB of the crystal[
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On application of the load\ the bicrystal undergoes some initial elastic deformation
and the _rst dislocation is nucleated when the displacement of the top face reaches
03[1 _[ This dislocation is driven into the boundary and is absorbed without an
increase in the load level[ Figure 04"a#\ "b# show the con_guration of the grain
boundary immediately before and after this nucleation event[ It is seen that the
dislocation absorption produces a step on the grain boundary[ This process may be
understood based on the DSC lattice by decomposing the Burgers vector into DSC
lattice vectors "King and smith\ 0879#[ In our case\ we _nd that

a9

1
ð0Þ\ 0\ 9Ł �

a9

03
ð2Þ0Þ1ÞŁ¦

a9

6
ð1Þ30Ł\ "34#

where "a9:03#ð2Þ0Þ1ÞŁ is the Burgers vector of a grain boundary dislocation parallel to
the boundary and "a9:6#ð2Þ30Ł is perpendicular to the boundary plane[ A careful
examination of Fig[ 04"b# reveals that "a9:03#ð2Þ0Þ1ÞŁ travels along the boundary\ and
stops on reaching the end of the nonlinear zone[ On subsequent loading\ another pair
of Shockley partials are nucleated when the displacement of the rigid indenter is 07[1
_\ which again does not result in any signi_cant reduction of the load[ Unlike the
_rst pair\ these dislocations are not immediately absorbed by the boundary\ and they
form a pile!up ahead of the boundary as shown in Fig[ 04"c#[ On additional inden!
tation\ these dislocations are also absorbed by the boundary[ The simulation was
terminated at this stage[

The neighboring crystal shows no signi_cant dislocation activity and thus it may
be concluded that slip is not transmitted into the neighboring grain across the bound!
ary[ The absorption of the dislocation resulted in a sliding motion of the grain

Fig[ 04[ Snapshots of atomic con_gurations depicting the interaction of dislocations with a grain boundary[
"a# Atomic con_guration immediately before the nucleation of the partials[ "b# Atomic con_guration
immediately after the nucleation of the _rst set of partials which have been absorbed into the boundary[
"c# The second pair of nucleated partials form a pile up[
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boundary by the passage of a grain boundary dislocation and the formation of a step
on the grain boundary[ The formation of the step appears to result in the increased
resistance of the boundary to dislocations\ as is clear from the fact that a signi_cantly
higher stress level had to be attained before the absorption of the second dislocation[

It is worth noting the signi_cant computational saving obtained by the use of the
QC method for this problem[ The number of degrees of freedom used in the QC
model was about 093 while a complete atomistic model of this problem would have
required more than 096 degrees of freedom[ The QC simulation required abut 039 h
on a DECÐAlpha work!station while a purely atomistic model would have required
a parallel supercomputer[

6[ Conclusions

This paper was set forth with a few main objectives[ First\ the quasicontinuum
formalism as given here was advanced as a basis for considering problems involving
multiple grains[ The viewpoint adopted is that of thinning of degrees of freedom\ with
regions far away from defect cores treated approximately by virtue of _nite element
interpolation and associated quadrature rules for evaluating the discrete sums needed
to obtain the total energy[ These ideas also serve as the basis for the extension of the
method to three dimensions and to the incorporation of dynamic e}ects via a _nite
temperature algorithm[

The second main objective of the present paper was to validate the method in the
context of a number of new problems[ In particular\ we have seen that the method
allows for the treatment of interfacial structures and the study of deformation process
that involves interfaces[ Other problems\ such as the formation of dislocation junc!
tions and the interactions of cracks and grain boundaries which have also been treated
using the ideas presented here will be described in forthcoming papers[
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